The field of HIV vaccine and prevention research continues to evolve as new insights are gained through animal studies and clinical trials. The Vaccine Discovery Group (VDG) aims to support this CHAVI-ID by providing insight and guidance to adjust research aims based on new findings during the life of the Center. This VDG will involve leadership from the clinical HIV vaccine field, along with key researchers with biotech, pharmaceutical and academic experience. Specifically, the VDG will provide guidance on vaccine development and administration based on personal insights and experiences in the field, and will provide data on how best to blend new outside knowledge into the research focus and aims of the CHAVI-ID, thereby ensuring the work of the Center remains at the forefront of addressing critical questions in the HIV vaccine research field. This will be accomplished by the following Specific Aims: 1. To share basic, practical knowledge about vaccine development and formulate creative strategies to advance ideas to products. 2. To provide sustained guidance to enable promising HlV-1 vaccine candidates to move forward into clinical evaluation.

Public Health Relevance

This Discovery Group supports the CHAVI-ID by providing direct linkages with the leaders and advisors in the clinical vaccine networks to more efficiently move products into phase 1 testing. This is critical for supporting the immunogen discovery activities of the Center.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-JBS-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Sok, Devin; Doores, Katie J; Briney, Bryan et al. (2014) Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci Transl Med 6:236ra63
Murin, Charles D; Julien, Jean-Philippe; Sok, Devin et al. (2014) Structure of 2G12 Fab2 in complex with soluble and fully glycosylated HIV-1 Env by negative-stain single-particle electron microscopy. J Virol 88:10177-88
Scharf, Louise; Scheid, Johannes F; Lee, Jeong Hyun et al. (2014) Antibody 8ANC195 reveals a site of broad vulnerability on the HIV-1 envelope spike. Cell Rep 7:785-95
Doria-Rose, Nicole A; Schramm, Chaim A; Gorman, Jason et al. (2014) Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 509:55-62
Tong, Tommy; Crooks, Ema T; Osawa, Keiko et al. (2014) Multi-parameter exploration of HIV-1 virus-like particles as neutralizing antibody immunogens in guinea pigs, rabbits and macaques. Virology 456-457:55-69
Li, Shuzhao; Rouphael, Nadine; Duraisingham, Sai et al. (2014) Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat Immunol 15:195-204
Gitlin, Alexander D; Shulman, Ziv; Nussenzweig, Michel C (2014) Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509:637-40
Pulendran, Bali (2014) Systems vaccinology: probing humanity's diverse immune systems with vaccines. Proc Natl Acad Sci U S A 111:12300-6
Bates, John T; Keefer, Christopher J; Slaughter, James C et al. (2014) Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein. Virology 454-455:139-44
Sundling, Christopher; Zhang, Zhenhai; Phad, Ganesh E et al. (2014) Single-cell and deep sequencing of IgG-switched macaque B cells reveal a diverse Ig repertoire following immunization. J Immunol 192:3637-44

Showing the most recent 10 out of 58 publications