The Glycobiology Core will provide a resource for all Center members providing expertise and facilities in glycan/glycoprotein engineering and structural analysis of glycans. Approximately half of the molecular mass of HIV gp120 is comprised of N-linked glycans that shield the protein backbone. These glycans impact on vaccine design in three distinct ways. Firstly, the carbohydrates themselves are distinct from typical human glycosylation and can serve as a target for broadly neutralizing antibodies. Secondly, the glycans of gp120 limit or modulate antibody recognition of underlying protein epitopes. Finally, both viral (and immunogen) glycans can interact with host cell lectins and trigger major immunomodulatory signaling pathways. The Glycobiology Core is devoted to supporting Center members in the optimization of these critical parameters for vaccine design.

Public Health Relevance

The Glycobiology Core will contribute to the development of immunogens by the provision of a range of analytical tools (NP-HPLC, MALDI-MS, ESI-MS/MS and Ion Mobility MS) and provide full compositional and linkage information on viral and immunogen glycans.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
5UM1AI100663-04
Application #
8897981
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
2016-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
4
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Baxter, Amy E; O'Doherty, Una; Kaufmann, Daniel E (2018) Beyond the replication-competent HIV reservoir: transcription and translation-competent reservoirs. Retrovirology 15:18
Cohn, Lillian B; da Silva, Israel T; Valieris, Renan et al. (2018) Clonal CD4+ T cells in the HIV-1 latent reservoir display a distinct gene profile upon reactivation. Nat Med 24:604-609
Crispin, Max; Ward, Andrew B; Wilson, Ian A (2018) Structure and Immune Recognition of the HIV Glycan Shield. Annu Rev Biophys :
Prévost, Jérémie; Richard, Jonathan; Ding, Shilei et al. (2018) Envelope glycoproteins sampling states 2/3 are susceptible to ADCC by sera from HIV-1-infected individuals. Virology 515:38-45
Cohen, Yehuda Z; Lorenzi, Julio C C; Krassnig, Lisa et al. (2018) Relationship between latent and rebound viruses in a clinical trial of anti-HIV-1 antibody 3BNC117. J Exp Med 215:2311-2324
Dey, Antu K; Cupo, Albert; Ozorowski, Gabriel et al. (2018) cGMP production and analysis of BG505 SOSIP.664, an extensively glycosylated, trimeric HIV-1 envelope glycoprotein vaccine candidate. Biotechnol Bioeng 115:885-899
Bianchi, Matteo; Turner, Hannah L; Nogal, Bartek et al. (2018) Electron-Microscopy-Based Epitope Mapping Defines Specificities of Polyclonal Antibodies Elicited during HIV-1 BG505 Envelope Trimer Immunization. Immunity 49:288-300.e8
Mendoza, Pilar; Gruell, Henning; Nogueira, Lilian et al. (2018) Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature 561:479-484
Tsui, Carlson; Martinez-Martin, Nuria; Gaya, Mauro et al. (2018) Protein Kinase C-? Dictates B Cell Fate by Regulating Mitochondrial Remodeling, Metabolic Reprogramming, and Heme Biosynthesis. Immunity 48:1144-1159.e5
Porichis, Filippos; Hart, Meghan G; Massa, Alexandra et al. (2018) Immune Checkpoint Blockade Restores HIV-Specific CD4 T Cell Help for NK Cells. J Immunol 201:971-981

Showing the most recent 10 out of 336 publications