The biological properties of the nonclassical class I MHC molecules secreted into blood and tissue fluids are not currently understood. To address this issue, we studied the murine Q10 molecule, one of the most abundant, soluble class Ib molecules. Mass spectrometry analyses of hybrid Q10 polypeptides revealed that alpha1alpha2 domains of Q10 associate with 8-9 long peptides similar to the classical class I MHC ligands. Several of the sequenced peptides matched intracellularly synthesized murine proteins. This finding and the observation that the Q10 hybrid assembly is TAP2-dependent supports the notion that the Q10 groove is loaded by the classical class I Ag presentation pathway. Peptides eluted from Q10 displayed a binding motif typical of H-2K, D, and L ligands. They carried conserved residues at P2 (Gly), P6 (Leu), and P omega(Phe/Leu). The role of these residues as anchor/auxiliary anchors was confirmed by Ala substitution experiments. The Q10 peptide repertoire was heterogeneous, with 75% of the groove occupied by a multitude of diverse peptides; however, 25% of the molecules bound a single peptide identical to the region of a TCR V beta-chain. Since this peptide did not display enhanced binding affinity for Q10 nor does its origin and sequence suggest that it is functionally significant, we propose that the nonclassical class I groove of Q10 resembles H-2K, D, and L grooves more than the highly specialized clefts of nonclassical class I Ags such as Qa-1, HLA-E, and M3.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Intramural Research (Z01)
Project #
1Z01AI000543-13
Application #
6431587
Study Section
(LAD)
Project Start
Project End
Budget Start
Budget End
Support Year
13
Fiscal Year
2000
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Burgess, Steven J; Marusina, Alina I; Pathmanathan, Ishani et al. (2006) IL-21 down-regulates NKG2D/DAP10 expression on human NK and CD8+ T cells. J Immunol 176:1490-7
Lieto, L D; Maasho, K; West, D et al. (2006) The human CD94 gene encodes multiple, expressible transcripts including a new partner of NKG2A/B. Genes Immun 7:36-43
Marusina, Alina I; Kim, Dae-Ki; Lieto, Louis D et al. (2005) GATA-3 is an important transcription factor for regulating human NKG2A gene expression. J Immunol 174:2152-9
Borrego, Francisco; Masilamani, Madhan; Kabat, Juraj et al. (2005) The cell biology of the human natural killer cell CD94/NKG2A inhibitory receptor. Mol Immunol 42:485-8
Maasho, Kerima; Marusina, Alina; Reynolds, Nicole M et al. (2004) Efficient gene transfer into the human natural killer cell line, NKL, using the Amaxa nucleofection system. J Immunol Methods 284:133-40
Kim, Dae-Ki; Kabat, Juraj; Borrego, Francisco et al. (2004) Human NKG2F is expressed and can associate with DAP12. Mol Immunol 41:53-62
Sanni, Tolib B; Masilamani, Madhan; Kabat, Juraj et al. (2004) Exclusion of lipid rafts and decreased mobility of CD94/NKG2A receptors at the inhibitory NK cell synapse. Mol Biol Cell 15:3210-23
Lieto, Louis D; Borrego, Francisco; You, Chi-Hyun et al. (2003) Human CD94 gene expression: dual promoters differing in responsiveness to IL-2 or IL-15. J Immunol 171:5277-86
Borrego, Francisco; Kabat, Juraj; Sanni, Tolib B et al. (2002) NK cell CD94/NKG2A inhibitory receptors are internalized and recycle independently of inhibitory signaling processes. J Immunol 169:6102-11
Kabat, Juraj; Borrego, Francisco; Brooks, Andrew et al. (2002) Role that each NKG2A immunoreceptor tyrosine-based inhibitory motif plays in mediating the human CD94/NKG2A inhibitory signal. J Immunol 169:1948-58

Showing the most recent 10 out of 11 publications