The treatment of a number of diseases including a broad range of anemias, hemoglobinopathies and malarial diseases will require a fundamental understanding of both cellular and molecular aspects of human erythropoiesis. Many experimental methodologies aimed at understanding this process are inherently limited by the use of nonhuman cells and cell lines derived from transformed cells. The prospective study of human erythropoiesis using peripheral blood derived cells has been limited by retrospective analyses associated with semisolid culture of individual cells and contaminating populations within bulk cultures. We have taken a direct approach toward the prospective study of the early and late transcriptional events that encompass human erythropoiesis by examining cells that proliferate in culture specifically in response to the hormone erythropoietin. Using flow cytometry to analyze liquid cultured blood from normal volunteers, we have identified and temporally phenotyped the erythroid continuum of cells present in bulk cultures. This approach permitted us to identify, quantitate and purify erythroblasts that are transcriptionally committed to erythroid differentiation at early (progenitor) and late (precursor) developmental stages. The progenitor cell population is pivotal for the study of proliferation and differentiation events associated with normal and abnormal human erythropoiesis. The precursor cell population is equally important for defining the transcriptional events required for terminal erythroid cell differentiation. Our goal is to fully characterize these cell populations using current molecular genetic methods in order to understand and manipulate their transcriptional patterns. We are generating a robust database describing the transcriptional profile of genes active in pure populations of erythroid progenitor and precursor cells that has been organized into an internet accessible resource (http://hembase.niddk.nih.gov/). Our database, as well as others available on the worldwide web, is now being screened for disease relevant transcripts and gene patterning. Several secondary projects have been pursued as a direct result of these efforts. They include 1) the identification of the Dombrock blood group carrier molecule for blood typing and the prevention of hemolytic anemias, 2) gene patterning of myelodysplastic syndromes using erythroid-focused cDNA arrays, and 3) review of the longstanding models for hemoglobin production during adult human erythropoiesis. Other projects include the improvement of culture methods for primary human erythroid cells and the exploration of new strategies for the treatment of hemoglobinopathies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Intramural Research (Z01)
Project #
1Z01DK025089-05
Application #
6532099
Study Section
(LCB)
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2001
Total Cost
Indirect Cost
Name
U.S. National Inst Diabetes/Digst/Kidney
Department
Type
DUNS #
City
State
Country
United States
Zip Code
de Vasconcellos, Jaira F; Lee, Y Terry; Byrnes, Colleen et al. (2016) HMGA2 Moderately Increases Fetal Hemoglobin Expression in Human Adult Erythroblasts. PLoS One 11:e0166928
Oneal, Patricia A; Gantt, Nicole M; Schwartz, Joseph D et al. (2006) Fetal hemoglobin silencing in humans. Blood 108:2081-6
Miller, Jeffery Lynn (2006) Patchwork HBA1 and HBA2 genes. Haematologica 91:289A
Bhanu, Natarajan V; Trice, Tiffany A; Lee, Y Terry et al. (2005) A sustained and pancellular reversal of gamma-globin gene silencing in adult human erythroid precursor cells. Blood 105:387-93
Miller, Jeffery L (2005) Signaled expression of fetal hemoglobin during development. Transfusion 45:1229-32
Goh, Sung-Ho; Lee, Y Terry; Bhanu, Natarajan V et al. (2005) A newly discovered human alpha-globin gene. Blood 106:1466-72
Bhanu, Natarajan V; Trice, Tiffany A; Lee, Y Terry et al. (2004) A signaling mechanism for growth-related expression of fetal hemoglobin. Blood 103:1929-33
Goh, Sung-Ho; Jackson, Kaedrea A; Terry Lee, Y et al. (2004) Identification of an alternate delta-globin mRNA in adult human erythroid cells. Genomics 84:431-4
Miller, Jeffery L (2004) A genome-based approach for the study of erythroid biology and disease. Blood Cells Mol Dis 32:341-3
Goh, Sung-Ho; Lee, Y Terry; Bouffard, Gerard G et al. (2004) Hembase: browser and genome portal for hematology and erythroid biology. Nucleic Acids Res 32:D572-4

Showing the most recent 10 out of 28 publications