Somatic hypermutation of immunoglobulin genes occurs at a frequency that is a million times greater than mutation in other genes. Mutations occur in variable genes to increase antibody affinity, and in switch regions before constant genes to cause switching from IgM to IgG. Hypermutation is initiated in activated B cells when the activation-induced deaminase protein deaminates cytosine in DNA to uracil. Uracils can be processed by either a mutagenic pathway to produce mutations, or a non-mutagenic pathway to remove mutations. In the mutagenic pathway, we first studied the role of mismatch repair proteins, MSH2, MSH3, MSH6, PMS2, and MLH1, since they would recognize mismatches. The MSH2-MSH6 heterodimer is involved in hypermutation by binding to U:G and other mismatches generated during repair synthesis, but the other proteins are not necessary. Second, we analyzed the role of low fidelity DNA polymerases eta, iota, and theta in synthesizing mutations, and conclude that polymerase eta is the dominant participant by generating mutations at A:T base pairs. In the non-mutagenic pathway, we examined the role of the Cockayne syndrome B protein, which interacts with other repair proteins. Mice deficient for this protein had normal hypermutation and class switch recombination, showing that it is not involved.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAAG000732-14
Application #
7964029
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
14
Fiscal Year
2009
Total Cost
$233,989
Indirect Cost
Name
National Institute on Aging
Department
Type
DUNS #
City
State
Country
Zip Code
Pape, Kathryn A; Maul, Robert W; Dileepan, Thamotharampillai et al. (2018) Naive B Cells with High-Avidity Germline-Encoded Antigen Receptors Produce Persistent IgM+ and Transient IgG+ Memory B Cells. Immunity 48:1135-1143.e4
Gearhart, Patricia J; Mock, Beverly A; Casellas, Rafael et al. (2018) The Reign of Antibodies: A Celebration of and Tribute to Michael Potter and His Homogeneous Immunoglobulin Workshops. J Immunol 200:23-26
Castiblanco, Diana P; Maul, Robert W; Russell Knode, Lisa M et al. (2017) Co-Stimulation of BCR and Toll-Like Receptor 7 Increases Somatic Hypermutation, Memory B Cell Formation, and Secondary Antibody Response to Protein Antigen. Front Immunol 8:1833
Zanotti, Kimberly J; Gearhart, Patricia J (2016) Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. DNA Repair (Amst) 38:110-6
Maul, Robert W; MacCarthy, Thomas; Frank, Ekaterina G et al. (2016) DNA polymerase ? functions in the generation of tandem mutations during somatic hypermutation of antibody genes. J Exp Med 213:1675-83
Zanotti, Kimberly J; Maul, Robert W; Castiblanco, Diana P et al. (2015) ATAD5 deficiency decreases B cell division and Igh recombination. J Immunol 194:35-42
Maul, Robert W; Gearhart, Patricia J (2014) Refining the Neuberger model: Uracil processing by activated B cells. Eur J Immunol 44:1913-6
Saribasak, Huseyin; Maul, Robert W; Cao, Zheng et al. (2012) DNA polymerase ? generates tandem mutations in immunoglobulin variable regions. J Exp Med 209:1075-81
Pape, Kathryn A; Taylor, Justin J; Maul, Robert W et al. (2011) Different B cell populations mediate early and late memory during an endogenous immune response. Science 331:1203-7
Maul, Robert W; Gearhart, Patricia J (2010) AID and somatic hypermutation. Adv Immunol 105:159-91

Showing the most recent 10 out of 13 publications