The base excision repair pathway is initiated by the action of a class of enzymes known as DNA glycosylases, which recognize and release the damaged base, and thus give specificity to the repair process. Mammalian cells carry two major DNA glycosylases for the repair of oxidized bases, oxoguanine DNA glycosylase (OGG1) and Endonuclease III homologue (NTH1). We found that OGG1 plays a crucial role in the repair of oxidized lesions in mitochondria and is probably the only DNA glycosylase for 8-oxoG removal in these organelles. In human cells two distinct OGG1 isoforms are expressed, alpha and beta. All BER enzymes are encoded in the nucleus and transported to mitochondria;however there is very limited information on the regulation of mitochondrial BER. In mammalian mitochondria the mtDNA is found in a large protein-DNA complex known as the nucleoid. One of the most abundant protein components of mammalian nucleoids is the transcription factor TFAM, which has been postulated to have a structural function in compacting mtDNA into the nucleoid structure. Using recombinant human TFAM, we investigated whether TFAM could modulate mtDNA repair. We find that TFAM could inhibit BER proteins and mitochondrial pol gamma. To explore whether this inhibition of activity by TFAM was a function of TFAMs high affinity DNA binding we created a TFAM DNA binding mutant. We observed less inhibition in those reactions containing the DNA binding mutant of TFAM. We proposed that TFAM may be functioning like nuclear histones and therefore proposed that a TFAM remodeling protein must exit in mitochondria to allow for mtDNA metabolism. We went on to show that p53, a known TFAM interacting protein, could relieve TFAM inhibition of OGG1 incision. We are continuing to search for and interrogate protein-interaction with TFAM in an attempt to more fully characterize mtDNA repair and metabolism. Another important set of proteins involved in mitochondrial DNA metabolism are the helicases SUV3 and PIF1. We have investigated the biochemical functions of SUV3, and it appears to interact with some mitochondrial and telomere proteins, making it possible that it functions both in telomeres and in mitochondria. This is under further investigation.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAAG000733-15
Application #
8148302
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
15
Fiscal Year
2010
Total Cost
$641,701
Indirect Cost
Name
National Institute on Aging
Department
Type
DUNS #
City
State
Country
Zip Code
Baptiste, Beverly A; Katchur, Steven R; Fivenson, Elayne M et al. (2018) Enhanced mitochondrial DNA repair of the common disease-associated variant, Ser326Cys, of hOGG1 through small molecule intervention. Free Radic Biol Med 124:149-162
Mitchell, Sarah J; Bernier, Michel; Aon, Miguel A et al. (2018) Nicotinamide Improves Aspects of Healthspan, but Not Lifespan, in Mice. Cell Metab 27:667-676.e4
Fang, Evandro F; Waltz, Tyler B; Kassahun, Henok et al. (2017) Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Sci Rep 7:46208
Fivenson, Elayne M; Lautrup, Sofie; Sun, Nuo et al. (2017) Mitophagy in neurodegeneration and aging. Neurochem Int 109:202-209
Kerr, Jesse S; Adriaanse, Bryan A; Greig, Nigel H et al. (2017) Mitophagy and Alzheimer's Disease: Cellular and Molecular Mechanisms. Trends Neurosci 40:151-166
Fang, Evandro F; Lautrup, Sofie; Hou, Yujun et al. (2017) NAD+ in Aging: Molecular Mechanisms and Translational Implications. Trends Mol Med 23:899-916
Fang, Evandro F; Bohr, Vilhelm A (2017) NAD(+): The convergence of DNA repair and mitophagy. Autophagy 13:442-443
Fakouri, Nima Borhan; Durhuus, Jon Ambæk; Regnell, Christine Elisabeth et al. (2017) Rev1 contributes to proper mitochondrial function via the PARP-NAD+-SIRT1-PGC1? axis. Sci Rep 7:12480
Croteau, Deborah L; Fang, Evandro Fei; Nilsen, Hilde et al. (2017) NAD(+) in DNA repair and mitochondrial maintenance. Cell Cycle 16:491-492
Misiak, Magdalena; Vergara Greeno, Rebeca; Baptiste, Beverly A et al. (2017) DNA polymerase ? decrement triggers death of olfactory bulb cells and impairs olfaction in a mouse model of Alzheimer's disease. Aging Cell 16:162-172

Showing the most recent 10 out of 70 publications