Amyotrophic lateral sclerosis (ALS;Lou Gehrigs disease) is a fatal neurodegenerative disorder that leads to rapidly progressive paralysis and respiratory failure. ALS is the third most common neurodegenerative disease in the Western World, and there are currently no effective therapies. Frontotemporal dementia (FTD) is the most common form of dementia in the population under the age of 65. An overlap between these two clinically distinct neurological diseases has long been recognized, but the molecular basis of this intersection was unknown. Recently, the Neuromuscular Diseases Research Unit (NDRU), a part of the Laboratory of Neurogenetics at the National Institute on Aging, identified the major genetic cause of both ALS and FTD. To do this, Dr. Traynor (chief of NDRU) organized a worldwide consortium, bringing together groups that had previously been competitors to focus their efforts towards identifying this gene. This was made possible by the next generation sequencing technologies available at the NIH. This innovative approach worked, and his group published the cause of chromosome 9-linked ALS/FTD in the journal Neuron in September 2011. In these cases, the disease is caused by a six base pair segment of DNA that is pathologically repeated over and over again, up to several thousand times. This so-called large hexanucleotide repeat disrupts the C9ORF72 gene located on chromosome 9. This is the most common genetic cause of both ALS and FTD identified to date, accounting for approximately 40% of all familial cases of ALS and FTD in European and North American populations. Further, Dr. Traynors group has shown that this mutation underlies about 8% of cases of sporadically occurring ALS and FTD that lack a family history. This represents the first time that a common genetic cause has been identified for the sporadic form of these diseases. In a separate publication in The New England Journal of Medicine, they have also shown that the same large hexanucleotide repeat expansion underlies 1% of Alzheimers disease cases. A one percent reduction in the number of AD cases would represent approximately $1 billion in healthcare cost savings annually. The discovery of the C9ORF72 hexanucleotide repeat expansion is a landmark discovery in our understanding of neurodegenerative disease. It has already greatly effected how these diseases are diagnosed, investigated and perceived, and provides a mechanistic link between two clinically distinct disorders, ALS and FTD. It also provides a distinct therapeutic target for gene therapy efforts aimed at ameliorating the disease, and such efforts are already well underway. Ongoing projects in the laboratory include: (1) exome sequencing of additional familial ALS samples to look for causative genes underlying motor neuron degeneration. DNA for these cases were obtained from our collaborators, Adriano Chio (Italy), Michael Sendtner (Germany), Ekaterina Rogaeva (Canada), and Vivian Drory (Israel), as well as our own efforts to recruit subjects locally and nationally;(2) Large scale genome-wide association study. To achieve this, we have reached out to other laboratories interested in studying this locus, and formed an international consortium involving the University College London, the University of Turin, and the University of Helsinki in Finland. In summary, the current year has been incredibly successful in identifying genetic variants important in the pathogenesis of ALS using next generation sequencing technologies. Each of these studies employed large cohorts of research subjects, and utilized the sequencing and genotyping facilities available within the Laboratory of Neurogenetics, NIA. By understanding the cellular mechanisms underlying late-onset motor neurodegeneration, we also hope to shed light on the role of aging in the CNS and in age-related decline in mobility.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Institute on Aging
Zip Code
Calvo, Andrea; Moglia, Cristina; Canosa, Antonio et al. (2014) De novo nonsense mutation of the FUS gene in an apparently familial amyotrophic lateral sclerosis case. Neurobiol Aging 35:1513.e7-11
Diekstra, Frank P; Van Deerlin, Vivianna M; van Swieten, John C et al. (2014) C9orf72 and UNC13A are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: a genome-wide meta-analysis. Ann Neurol 76:120-33
Traynor, Bryan J (2014) A roadmap for genetic testing in ALS. J Neurol Neurosurg Psychiatry 85:476
Johnson, Janel O; Pioro, Erik P; Boehringer, Ashley et al. (2014) Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci 17:664-6
Landoure, Guida; Zhu, Peng-Peng; Lourenco, Charles M et al. (2013) Hereditary spastic paraplegia type 43 (SPG43) is caused by mutation in C19orf12. Hum Mutat 34:1357-60
Mok, Kin; Laaksovirta, Hannu; Tienari, Pentti J et al. (2013) Homozygosity analysis in amyotrophic lateral sclerosis. Eur J Hum Genet 21:1429-35
Renton, Alan E; Traynor, Bryan J (2013) CRESTing the ALS mountain. Nat Neurosci 16:774-5
Chio, A; Logroscino, G; Traynor, B J et al. (2013) Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41:118-30
Logroscino, Giancarlo; Traynor, Bryan J; Hardiman, Orla et al. (2010) Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry 81:385-90
Traynor, Bryan J; Singleton, Andrew B (2009) What's the FUS! Lancet Neurol 8:418-9

Showing the most recent 10 out of 20 publications