Most cases of genital herpes are due to herpes simplex virus (HSV)-2. The rate of HSV-2 infections increased by 30% from 1988 to 1994. In addition to genital herpes, transmission of HSV-2 to neonates causes severe life-threatening infections. Recent studies demonstrate a link between genital herpes and increased rates of transmission of HIV. Therefore, an effective HSV-2 vaccine is needed. Several HSV-2 vaccines have been tested in humans for prevention or reduction of genital herpes disease. A vaccine containing a single viral protein (HSV-2 glycoprotein D) recently showed no evidence for protection against genital herpes in an large international, phase three, randomized controlled trial in HSV-2 seronegative women. We postulated that the limited efficacy of the HSV-2 glycoprotein D vaccine is likely due to inadequate induction of broadly neutralizing antibody and cellular immune responses. We have been evaluating a candidate HSV-2 vaccine deleted for two essential genes, termed HSV-2 dl5-29, which was developed by David Knipe at Harvard University. In order to construct additional vaccine candidates, we cloned the entire HSV-2 genome into a plasmid containing a bacterial artificial chromosome (BAC). We showed that virus derived from the HSV-2 BAC replicated in cell culture at the same rate as wild-type virus and that mice infected with the HSV-2 BAC developed disease as well as latent HSV-2 infection at a similar rate as animals infected with wild-type virus. We have begun to engineer mutations in the HSV-2 BAC and to obtain mutated HSV-2. We are currently attempting to create a candidate HSV-2 vaccine that can replicate in the skin and induce a potent immune response, but not infect the nervous system and therefore not undergo latent infection and virus reactivation.

Project Start
Project End
Budget Start
Budget End
Support Year
23
Fiscal Year
2011
Total Cost
$371,010
Indirect Cost
City
State
Country
Zip Code
Cohen, Jeffrey I (2018) Herpesviruses in the Activated Phosphatidylinositol-3-Kinase-? Syndrome. Front Immunol 9:237
Wang, Kening; Tomaras, Georgia D; Jegaskanda, Sinthujan et al. (2017) Monoclonal Antibodies, Derived from Humans Vaccinated with the RV144 HIV Vaccine Containing the HVEM Binding Domain of Herpes Simplex Virus (HSV) Glycoprotein D, Neutralize HSV Infection, Mediate Antibody-Dependent Cellular Cytotoxicity, and Protect Mice J Virol 91:
Cohen, Jeffrey I (2017) Vaccination to Reduce Reactivation of Herpes Simplex Virus Type 2. J Infect Dis 215:844-846
Odegard, Jared M; Flynn, Patrick A; Campbell, David J et al. (2016) A novel HSV-2 subunit vaccine induces GLA-dependent CD4 and CD8 T cell responses and protective immunity in mice and guinea pigs. Vaccine 34:101-9
Wang, Kening; Goodman, Kyle N; Li, Daniel Y et al. (2016) A Herpes Simplex Virus 2 (HSV-2) gD Mutant Impaired for Neural Tropism Is Superior to an HSV-2 gD Subunit Vaccine To Protect Animals from Challenge with HSV-2. J Virol 90:562-74
Lamers, Susanna L; Newman, Ruchi M; Laeyendecker, Oliver et al. (2015) Global Diversity within and between Human Herpesvirus 1 and 2 Glycoproteins. J Virol 89:8206-18
Çuburu, Nicolas; Wang, Kening; Goodman, Kyle N et al. (2015) Topical herpes simplex virus 2 (HSV-2) vaccination with human papillomavirus vectors expressing gB/gD ectodomains induces genital-tissue-resident memory CD8+ T cells and reduces genital disease and viral shedding after HSV-2 challenge. J Virol 89:83-96
Newman, Ruchi M; Lamers, Susanna L; Weiner, Brian et al. (2015) Genome Sequencing and Analysis of Geographically Diverse Clinical Isolates of Herpes Simplex Virus 2. J Virol 89:8219-32
Knipe, David M; Corey, Lawrence; Cohen, Jeffrey I et al. (2014) Summary and recommendations from a National Institute of Allergy and Infectious Diseases (NIAID) workshop on ""Next Generation Herpes Simplex Virus Vaccines"". Vaccine 32:1561-2
Ben-Sasson, S Z; Wang, K; Cohen, J et al. (2013) IL-1? strikingly enhances antigen-driven CD4 and CD8 T-cell responses. Cold Spring Harb Symp Quant Biol 78:117-24

Showing the most recent 10 out of 15 publications