Over the last few years we have continued development of the use of focused ion beams in biology for site-specific imaging of the interior of cellular and tissue specimens at spatial resolutions over an order of magnitude better than those currently achieved with optical microscopy. The principle of imaging is based on using a focused ion beam to create a cut at a designated site in the specimen, followed by viewing the newly generated surface with a scanning electron beam. Iteration of these two steps several times thus results in the generation of a series of surface maps of the specimen at regularly spaced intervals, which can be converted into a three-dimensional map of the specimen. We have extended the application of this method to a variety of eukaryotic cells and tissues to establish this as a powerful tool for cellular and sub-cellular imaging in 3D for biomedical and clinical applications. Highlights of progress over the last year include: (i) development of tools for correlative light and 3D electron microscopy, the first such demonstration showing that the same cells can be imaged first by fluorescence microscopy, and followed by imaging of the entire 3D volume by electron microscopy at 3D resolutions that are now better than 10 nm;(ii) development of "atom probe tomography", a new technology for high resolution subcellular imaging and demonstrating its first application to biology by imaging mammalian cells at nanometer resolution and (iii) development of powerful tools for automation of data collection in focused ion beam microscopy in a collaboration with Fibics Inc. and its application to studying a variety of problems related to cell-cell communication on bacterial and viral infection.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Cancer Institute Division of Basic Sciences
Zip Code
Meyerson, Joel R; Kumar, Janesh; Chittori, Sagar et al. (2014) Structural mechanism of glutamate receptor activation and desensitization. Nature 514:328-34
Narayan, Kedar; Danielson, Cindy M; Lagarec, Ken et al. (2014) Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology. J Struct Biol 185:278-84
Kuybeda, Oleg; Frank, Gabriel A; Bartesaghi, Alberto et al. (2013) A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. J Struct Biol 181:116-27
Hildebrand, Mark; Kim, Sang; Shi, Dan et al. (2009) 3D imaging of diatoms with ion-abrasion scanning electron microscopy. J Struct Biol 166:316-28
Heymann, Jurgen A W; Shi, Dan; Kim, Sang et al. (2009) 3D imaging of mammalian cells with ion-abrasion scanning electron microscopy. J Struct Biol 166:1-7
Milne, Jacqueline L S; Subramaniam, Sriram (2009) Cryo-electron tomography of bacteria: progress, challenges and future prospects. Nat Rev Microbiol 7:666-75
Narayan, Kedar; Perkins, Edward M; Murphy, Gavin E et al. (2009) Staphylococcal enterotoxin A induces small clusters of HLA-DR1 on B cells. PLoS One 4:e6188
Lengyel, Jeffrey S; Stott, Katherine M; Wu, Xiongwu et al. (2008) Extended polypeptide linkers establish the spatial architecture of a pyruvate dehydrogenase multienzyme complex. Structure 16:93-103
Borgnia, Mario J; Subramaniam, Sriram; Milne, Jacqueline L S (2008) Three-dimensional imaging of the highly bent architecture of Bdellovibrio bacteriovorus by using cryo-electron tomography. J Bacteriol 190:2588-96
Lengyel, Jeffrey S; Milne, Jacqueline L S; Subramaniam, Sriram (2008) Electron tomography in nanoparticle imaging and analysis. Nanomedicine (Lond) 3:125-31