This project is a combination of a clinical trial of infusions of autologous anti-CD19 chimeric-antigen-receptor-transduced T cells and laboratory experiments performed on cells obtained from patients that received infusions of the chimeric-antigen-receptor-transduced T cells. During 2012 this project resulted in a Plenary Paper published in Blood entitled "B-cell Depletion and Remissions of Malignancy Along With Cytokine-associated Toxicity in a Clinical Trial of Anti-CD19 Chimeric-antigen-receptor-transduced T cells". The project also resulted in an abstract that was presented as an oral presentation at the most important hematology meeting in the world, the Annual Meeting of the American Society of Hematology. The rest of this section summarizes the project. New therapies are needed for chemotherapy-resistant B-cell malignancies. Adoptive transfer of T cells genetically-engineered to express chimeric antigen receptors (CARs) that specifically recognize the B-cell antigen CD19 is a promising new approach for treating B-cell malignancies. We are conducting a clinical trial in which patients receive infusions of autologous T cells that are transduced with gamma-retroviruses encoding an anti-CD19 CAR. The CAR is made up of the variable regions of an anti-CD19 antibody, a portion of the CD28 molecule, and a portion of the CD3-zeta molecule. Our clinical protocol consists of cyclophosphamide plus fludarabine chemotherapy followed by an infusion of anti-CD19-CAR-transduced T cells. We have treated 21 patients on this clinical trial. The patients had chronic lymphocytic leukemia (CLL) or non-Hodgkin lymphoma. Anti-CD19-CAR-transduced T cells that specifically recognized CD19-expressing target cells were produced for all patients.Of the most recent 14 patients treated on the current version of the protocol, 5 have obtained ongoing complete remissions. Eight of these 14 patients achieved partial remissions. Two of the 21 patients have died. A striking depletion of CD19+ B-lineage cells occurred in 9 of 11 evaluable patients. This B-cell depletion lasted for up to 18 months. Because of the long duration of B-cell depletion, it cannot be attributed to the chemotherapy that the patients received. For example, a patient with follicular lymphoma had a normal level of polyclonal blood B cells before treatment on our protocol. Six months after treatment, he had a blood B cell count of 1 per microliter (normal range 61-321 B cells per microliter). A patient with CLL had a regression of adenopathy in the first 32 days after chemotherapy and CAR-transduced T cell administration. CAR-transduced cells were detected in the blood of all 8 patients by quantitative PCR. The percentage of peripheral blood mononuclear cells (PBMC) containing the CAR gene varied widely. At early time-points after infusion, CAR-expressing T cells constituted up to 66 percent of all blood T cells. Patients had significant toxicities during the first 10 days after CAR-transduced T cell infusion. The most prominent toxicity were hypotension and neurological toxicity. CAR-transduced cells were detected in the blood of all 17 patients studied so far by quantitative PCR. These results demonstrate that CAR-expressing T cells can specifically eliminate targeted cells and cause significant cytokine-mediated toxicity in humans.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC011413-03
Application #
8763505
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2013
Total Cost
$42,057
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Kochenderfer, James N (2014) Genetic engineering of T cells in leukemia and lymphoma. Clin Adv Hematol Oncol 12:190-2
Kochenderfer, James N; Rosenberg, Steven A (2013) Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol 10:267-76