The Clinical Genetics Branch (CGB) is NCI's base for intramural clinical cancer genetics translational research activity. CGB brings a multidisciplinary, epidemiologic perspective to: Understanding the role of genes in the cause, treatment, and prevention of cancer;Developing comprehensive management strategies for high-risk individuals and families;and Training the next generation of clinical cancer genetics investigators.Hereditary Breast/Ovarian Cancer (HBOC) is based on a prospective cohort of 33 BRCA mutation-positive families with extensive clinical/epidemiologic data and biological samples. Clinical activity related to this study has ended, but its biospecimens continue to be used in multiple translational research projects. To date, 17 clinical manuscripts have been published and 32 reports plus 7 manuscripts under review (in collaboration with the international consortium CIMBA) elucidating genetic modifiers of BRCA-related breast and ovarian cancer penetrance have been published. Inherited Bone Marrow Failure Syndromes (IBMFS) Study targets Fanconi anemia (FA) and related disorders which include high risk of aplastic anemia, myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and selected solid tumors. We have enrolled 1722 members from 406 IBMFS families. Major findings include quantitative estimates of FA- and dyskeratosis congenita (DC)-related cancer risks, identifying the striking similarity in cancer risks in these 2 disorders, expanding the clinical phenotype of these syndromes, and identifying very short telomeres as pathognomonic for DC. Under a Fanconi Anemia Research Foundation grant, we are writing a report on immune function in FA patients. We collaborated on development of an in vitro assay for pathogenicity of missense variants of unknown significance in FANCD1/BRCA2. We have identified four (TINF2, WRAP53, fTEL1, ACD) of the 10 known dyskeratosis congenita genes, and provided the first evidence that the DC phenotype includes a high risk of neuropsychiatric disorders. We have analyzed the North American Diamond- Blackfan Registry (DBAR) and documented for the first time significant risks of cancer, particularly osteogenic sarcoma, in DBA. Familial Testicular Cancer is an inadequately-studied familial cancer disorder being evaluated under 2 protocols, one accruing new multiple-case families, the other aimed at mapping and cloning new TGCT susceptibility genes. Through the former, we have enrolled 725 consented members from 142 newly-ascertained families. This multidisciplinary, etiologically-oriented family study has found that testicular microlithiasis is more common than expected in TGCT kindred, recognized a possible new FTGCT syndrome characterized by renal and pituitary neoplasms, colonic polyps, lymphomas and lentigenes, and identified germline mutations in the PDE11A gene as a modifier of FTGCT risk. We published multiple FTGCT-related analyses related with the International Testicular Cancer Linkage Consortium. It has ceased to function, (having been replaced by the Testicular Cancer Association Consortium, TECAC) but it yielded the key hypothesis that has catalyzed current research into testicular cancer genomics, i.e., that the underlying genetic susceptibility involves the combined effects of multiple common genetic variants, each of relatively weak effect. 30 variants in 18 genomic regions (involving testicular embryology, fertility, KIT signaling, telomere biology) have now been implicated in the genetic pathogenesis of TGCT. We contributed to two new recent GWAS analyses which identified 5 of the implicated genomic regions, found no evidence of a dysmorphic phenotype, described an association between in utero exposure to diethylstilbestrol and FTGCT, determined that FTGCT is a site-specific cancer syndrome, and presented the first prospective FTGCT risk analysis, which revealed a 12-fold increase in TGCT risk among high-risk family members. The Li-Fraumeni Syndrome (LFS), originally identified by DCEG investigators 40 years ago, is a rare, inherited disorder caused by germline TP53 mutations, with increased risks of early-onset bone and soft tissue sarcomas, breast, adrenal and brain cancer. We have initiated a new LFS study which has enrolled 455 members (50 of whom have elected the MRI screening protocol) from 142 new families, and is providing genetic counseling and testing in search of new LFS genes in the 30% of LFS patients with a TP53 mutation, investigating novel cancer screening modalities (e.g., total body MRI), attempting to identify genetic modifiers of risk, and studying cancer risk-reduction strategies. We published the proceedings of an international workshop (November 2010) that resulted in formation of a new international LFS Research Consortium and the first LFS patient advocacy group. Familial Pleuropulmonary Blastoma (PPB) is a newly-described syndrome caused by germline mutations in DICER1;it represents the first known cancer predisposition syndrome caused by altered microRNA biogenesis. To date, we have enrolled 339 members from 65 PPB families, evaluated 116 subjects at the NIH Clinical Center and performed DICER1 mutation testing on 150 subjects. Leveraging an NIH Bench-to-Bedside award, we have formed a collaboration with the research group which discovered DICER1, with whom we are doing a detailed clinical phenotype and cancer risk quantification study of this rare, novel syndrome. A review of the PPB syndrome was published online in GeneReviews, and a report describing PPB-related nasal chondromesenchymal hamartoma is in press. Publications describing 350 registry-based PPB cases, the first 25 PPB families evaluated, and an analysis of PPB-related thyroid neoplasia are in preparation Neurofibromatosis 1 is a classic hereditary cancer susceptibility disorder. We are further defining its phenotype and seeking genetic modifiers of NF1 penetrance. We have shown that Jaffe-Campanacci syndrome is allelic to NF1. We have identified specific genetic variants that modify the risk of developing NF1-related caf-au-lait macules, an important proof-of-principle observation, and demonstrated that loss of the wild-type NF1 allele is the primary driver of plexiform neurofibroma tumorigenesis.Genetic Counseling, Psychosocial and Behavioral Studies in Familial Cancer is a vital component of each study in CGB's research portfolio, which has yielded more than 50 peer-reviewed publications. We have extended the application of a new genetic counseling tools, e.g., the Colored Ecogenetics Relationship Map, from HBOC to FTGCT, applied novel analytic strategies, such as social network analysis, analyzed the variables associated with choosing surgery or screening in GOG-199, assessed determinants of bone marrow transplant decision-making within FA families, and explored the impact of ambiguous and false-positive screening test results on mood and screening behavior of BRCA1/2 mutation carriers. In our Rare Familial Cancer Syndromes WES sequencing project, we have etiologically implicated CBL mutations in juvenile JMML, CEBPA in familial AML, and BRAF mutations in familial hairy cell leukemia. We have also shown that Dubowitz syndrome is a syndrome complex of multiple genetically-distinct, phenotypically overlapping disorders in which germline LIG4 mutations play an etiologic role.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIACP010144-16
Application #
8938239
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
16
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Cancer Epidemiology and Genetics
Department
Type
DUNS #
City
State
Country
Zip Code
Rebbeck, Timothy R (see original citation for additional authors) (2018) Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Hum Mutat 39:593-620
Wang, Youjin; Pfeiffer, Ruth M; Alsaggaf, Rotana et al. (2018) Risk of skin cancer among patients with myotonic dystrophy type 1 based on primary care physician data from the U.K. Clinical Practice Research Datalink. Int J Cancer 142:1174-1181
Harmsen, Marline G; Piek, Jurgen M J; Bulten, Johan et al. (2018) Peritoneal carcinomatosis after risk-reducing surgery in BRCA1/2 mutation carriers. Cancer 124:952-959
Ballinger, Mandy L; Best, Ana; Mai, Phuong L et al. (2017) Baseline Surveillance in Li-Fraumeni Syndrome Using Whole-Body Magnetic Resonance Imaging: A Meta-analysis. JAMA Oncol 3:1634-1639
Khan, Nicholas E; Bauer, Andrew J; Doros, Leslie et al. (2017) Macrocephaly associated with the DICER1 syndrome. Genet Med 19:244-248
Villacis, Rolando A R; Basso, Tatiane R; Canto, Luisa M et al. (2017) Rare germline alterations in cancer-related genes associated with the risk of multiple primary tumor development. J Mol Med (Berl) 95:523-533
Lipton, Jeffrey M; Alter, Blanche P (2017) Heritable cancer: Rounding up the not so usual suspects. Pediatr Blood Cancer 64:219-220
Peng, Gang; Bojadzieva, Jasmina; Ballinger, Mandy L et al. (2017) Estimating TP53 Mutation Carrier Probability in Families with Li-Fraumeni Syndrome Using LFSPRO. Cancer Epidemiol Biomarkers Prev 26:837-844
Hamdi, Yosr; Soucy, Penny; Kuchenbaeker, Karoline B et al. (2017) Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q22.3. Breast Cancer Res Treat 161:117-134
Savage, Sharon A; Dufour, Carlo (2017) Classical inherited bone marrow failure syndromes with high risk for myelodysplastic syndrome and acute myelogenous leukemia. Semin Hematol 54:105-114

Showing the most recent 10 out of 165 publications