Progress in FY2010 has been in the following areas: 1. AMYLOID FIBRIL STRUCTURES DERIVED FROM BRAIN TISSUE: We have developed a new protocol for partial purification of amyloid from brain tissue obtained at autopsy, and a new protocol for using this material as a """"""""seed"""""""" for growing fibrils from synthetic, isotopically-labeled peptide. With the new protocols, we can create 1 mg fibril samples suitable for solid state NMR and electron microscopy studies, starting with 1 g of brain tissue, in a single fibril growth step. Applying this protocol to fronto-temporal lobe and occipital lobe tissue from a diseased Alzheimer's disease patient, we find that there is a single fibril structure in this tissue, a surprising result. Moreover, based on NMR chemical shifts, this structure differs from any structures we have examined previously. Thus, the possibility exists that this is a particularly neurotoxic structure, which may be a key to understanding the pathogenesis of AD. We are in the process of developing a molecular structural model for this brain-derived beta-amyloid fibril. 2. SURPRISING ANTIPARALLEL BETA-SHEET STRUCTURE IN MUTANT BETA-AMYLOID FIBRILS: In collaboration with S.C. Meredith, we have recently shown that the Asp23-to-Asn mutant of human beta-amyloid (D23N mutant, or Iowa mutant) is capable of forming amyloid fibrils that contain antiparallel beta-sheets. This is the first demonstration that a full-length peptide or protein could form fibrils that contain antiparallel (rather than parallel) beta-sheets. We have now explored fibril formation conditions that produce homogeneous D23N beta-amyloid fibrils. Extensive exploration of growth and seeding conditions indicates that the antiparallel D23N structure is metastable relative to parallel beta-sheet structures. Nonetheless, using a novel filtration purification protocol, we have isolated relatively pure preparations of antiparallel D23N fibrils and have performed measurements that will allow us to propose a specific molecular structural model. 3. KINETICS AND THERMODYNAMICS OF FIBRIL GROWTH: We have used atomic force microscopy to monitor the extension rates and shrinkage rates of both wild-type and D23N mutant beta-amyloid fibrils, in an effort to assess the relative thermodynamic stabilities of various polymorphs. Data analysis is in progress.

Project Start
Project End
Budget Start
Budget End
Support Year
4
Fiscal Year
2010
Total Cost
$480,713
Indirect Cost
City
State
Country
Zip Code
Yau, Wai-Ming; Tycko, Robert (2018) Depletion of amyloid-? peptides from solution by sequestration within fibril-seeded hydrogels. Protein Sci 27:1218-1230
Qiang, Wei; Yau, Wai-Ming; Lu, Jun-Xia et al. (2017) Structural variation in amyloid-? fibrils from Alzheimer's disease clinical subtypes. Nature 541:217-221
Tycko, Robert (2016) Molecular Structure of Aggregated Amyloid-?: Insights from Solid-State Nuclear Magnetic Resonance. Cold Spring Harb Perspect Med 6:
Tycko, Robert (2016) Alzheimer's disease: Structure of aggregates revealed. Nature 537:492-493
Tycko, Robert (2015) Amyloid polymorphism: structural basis and neurobiological relevance. Neuron 86:632-45
Potapov, Alexey; Yau, Wai-Ming; Ghirlando, Rodolfo et al. (2015) Successive Stages of Amyloid-? Self-Assembly Characterized by Solid-State Nuclear Magnetic Resonance with Dynamic Nuclear Polarization. J Am Chem Soc 137:8294-307
Tycko, Robert (2014) Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci 23:1528-39
Lu, Jun-Xia; Qiang, Wei; Yau, Wai-Ming et al. (2013) Molecular structure of ?-amyloid fibrils in Alzheimer's disease brain tissue. Cell 154:1257-68
Qiang, Wei; Kelley, Kevin; Tycko, Robert (2013) Polymorph-specific kinetics and thermodynamics of ?-amyloid fibril growth. J Am Chem Soc 135:6860-71
Qiang, Wei; Yau, Wai-Ming; Luo, Yongquan et al. (2012) Antiparallel ?-sheet architecture in Iowa-mutant ?-amyloid fibrils. Proc Natl Acad Sci U S A 109:4443-8

Showing the most recent 10 out of 18 publications