Dopamine in motivational control - rewarding, aversive, and alerting: Midbrain dopamine neurons are well known for their strong responses to rewards and their critical role in positive motivation. It has become increasingly clear, however, that dopamine neurons also transmit signals related to salient but nonrewarding experiences such as aversive and alerting events. Here we review recent advances in understanding the reward and nonreward functions of dopamine. Based on this data, we propose that dopamine neurons come in multiple types that are connected with distinct brain networks and have distinct roles in motivational control. Some dopamine neurons encode motivational value, supporting brain networks for seeking, evaluation, and value learning. Others encode motivational salience, supporting brain networks for orienting, cognition, and general motivation. Both types of dopamine neurons are augmented by an alerting signal involved in rapid detection of potentially important sensory cues. We hypothesize that these dopaminergic pathways for value, salience, and alerting cooperate to support adaptive behavior. Dopamine-mediated learning and switching in cortico-striatal circuit explain behavioral changes in reinforcement learning: The basal ganglia are thought to play a crucial role in reinforcement learning. Central to the learning mechanism are dopamine (DA) D1 and D2 receptors located in the cortico-striatal synapses. However, it is still unclear how this DA-mediated synaptic plasticity is deployed and coordinated during reward-contingent behavioral changes. Here we propose a computational model of reinforcement learning that uses different thresholds of D1- and D2-mediated synaptic plasticity which are antagonized by DA-independent synaptic plasticity. A phasic increase in DA release caused by a larger-than-expected reward induces long-term potentiation (LTP) in the direct pathway, whereas a phasic decrease in DA release caused by a smaller-than-expected reward induces a cessation of long-term depression, leading to LTP in the indirect pathway. This learning mechanism can explain the robust behavioral adaptation observed in a location-reward-value-association task where the animal makes shorter latency saccades to reward locations. The changes in saccade latency become quicker as the monkey becomes more experienced. This behavior can be explained by a switching mechanism which activates the cortico-striatal circuit selectively. Our model also shows how D1- or D2-receptor blocking experiments affect selectively either reward or no-reward trials. The proposed mechanisms also explain the behavioral changes in Parkinsons disease. Cortico-basal ganglia mechanisms for overcoming innate, habitual and motivational behaviors: Most of the human behaviors are executed automatically under familiar circumstances. These behaviors are prepotent in that they take precedence over any other potential alternatives. Yet, humans are also capable of engaging cognitive resources to inhibit such a prepotent behavior and replace it with an alternative controlled behavior in response to an unforeseen situation. This remarkable capability to switch behaviors in a short period of time is the hallmark of executive functions. In this article, we first argue that the prepotent automaticity could emerge at least in three different domains - innate, habitual and motivational. We then review neurophysiological findings on how the brain might realize its switching functions in each domain, primarily by focusing on the monkey oculomotor system as the experimental model. Emerging evidence now suggests that multiple neuronal populations in the shared cortico-basal ganglia network contribute to overriding prepotent eye movement, be its origin innate, habitual or motivational. This consideration suggests the general versatility of the cortico-basal ganglia network as the neural mechanism whereby humans and other animals keep themselves from becoming subservient to reflex, habit and motivational impulses.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAEY000415-09
Application #
8339774
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2011
Total Cost
$544,118
Indirect Cost
Name
U.S. National Eye Institute
Department
Type
DUNS #
City
State
Country
Zip Code
Ghazizadeh, Ali; Hong, Simon; Hikosaka, Okihide (2018) Prefrontal Cortex Represents Long-Term Memory of Object Values for Months. Curr Biol 28:2206-2217.e5
Ghazizadeh, Ali; Griggs, Whitney; Leopold, David A et al. (2018) Temporal-prefrontal cortical network for discrimination of valuable objects in long-term memory. Proc Natl Acad Sci U S A 115:E2135-E2144
Griggs, Whitney S; Amita, Hidetoshi; Gopal, Atul et al. (2018) Visual Neurons in the Superior Colliculus Discriminate Many Objects by Their Historical Values. Front Neurosci 12:396
Maeda, Kazutaka; Kunimatsu, Jun; Hikosaka, Okihide (2018) Amygdala activity for the modulation of goal-directed behavior in emotional contexts. PLoS Biol 16:e2005339
Hikosaka, Okihide; Kim, Hyoung F; Amita, Hidetoshi et al. (2018) Direct and indirect pathways for choosing objects and actions. Eur J Neurosci :
Amita, Hidetoshi; Kim, Hyoung F; Smith, Mitchell K et al. (2018) Neuronal connections of direct and indirect pathways for stable value memory in caudal basal ganglia. Eur J Neurosci :
Kim, Hyoung F; Amita, Hidetoshi; Hikosaka, Okihide (2017) Indirect Pathway of Caudal Basal Ganglia for Rejection of Valueless Visual Objects. Neuron 94:920-930.e3
Hikosaka, Okihide; Ghazizadeh, Ali; Griggs, Whitney et al. (2017) Parallel basal ganglia circuits for decision making. J Neural Transm (Vienna) :
Griggs, Whitney S; Kim, Hyoung F; Ghazizadeh, Ali et al. (2017) Flexible and Stable Value Coding Areas in Caudate Head and Tail Receive Anatomically Distinct Cortical and Subcortical Inputs. Front Neuroanat 11:106
Yasuda, Masaharu; Hikosaka, Okihide (2017) To Wait or Not to Wait-Separate Mechanisms in the Oculomotor Circuit of Basal Ganglia. Front Neuroanat 11:35

Showing the most recent 10 out of 60 publications