During atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates in macrophages to form foam cells. Macrophage uptake of LDL promotes foam cell formation but the mechanism mediating this process is not clear. The present study investigates the mechanism of LDL uptake for macrophage colony-stimulating factor (M-CSF)-differentiated murine bone marrow-derived macrophages. LDL receptor-null (LDLR-/-) macrophages incubated with LDL showed non-saturable accumulation of cholesterol that did not down-regulate for the 24 h examined. Incubation of LDLR-/-macrophages with increasing concentrations of 125I-LDL showed non-saturable macrophage LDL uptake. A 20-fold excess of unlabeled LDL had no effect on 125I-LDL uptake by wild-type macrophages and genetic deletion of the macrophage scavenger receptors CD36 and SRA did not affect 125I-LDL uptake, showing that LDL uptake occurred by fluid-phase pinocytosis independently of receptors. Cholesterol accumulation was inhibited approximately 50% in wild-type and LDLR-/- mice treated with LY294002 or wortmannin, inhibitors of all classes of phosphoinositide 3-kinases (PI3K). Time-lapse, phase-contrast microscopy showed that macropinocytosis, an important fluid-phase uptake pathway in macrophages, was blocked almost completely by PI3K inhibition with wortmannin. Pharmacological inhibition of the class I PI3K isoforms alpha, beta, gamma or delta did not affect macrophage LDL-derived cholesterol accumulation or macropinocytosis. Furthermore, macrophages from mice expressing kinase-dead class I PI3K beta, gamma or delta isoforms showed no decrease in cholesterol accumulation or macropinocytosis when compared with wild-type macrophages. Thus, non-class I PI3K isoforms mediated macropinocytosis in these macrophages. Further characterization of the components necessary for LDL uptake, cholesterol accumulation, and macropinocytosis identified dynamin, microtubules, actin, and vacuolar type H(+)-ATPase as contributing to uptake. However, Pak1, Rac1, and Src-family kinases, which mediate fluid-phase pinocytosis in certain other cell types, were unnecessary. In conclusion, our findings provide evidence that targeting those components mediating macrophage macropinocytosis with inhibitors may be an effective strategy to limit macrophage accumulation of LDL-derived cholesterol in arteries.

Project Start
Project End
Budget Start
Budget End
Support Year
22
Fiscal Year
2012
Total Cost
$878,506
Indirect Cost
Name
National Heart, Lung, and Blood Institute
Department
Type
DUNS #
City
State
Country
Zip Code
Jin, Xueting; Sviridov, Denis; Liu, Ying et al. (2016) ABCA1 (ATP-Binding Cassette Transporter A1) Mediates ApoA-I (Apolipoprotein A-I) and ApoA-I Mimetic Peptide Mobilization of Extracellular Cholesterol Microdomains Deposited by Macrophages. Arterioscler Thromb Vasc Biol 36:2283-2291
Jin, Xueting; Kruth, Howard S (2016) Culture of Macrophage Colony-stimulating Factor Differentiated Human Monocyte-derived Macrophages. J Vis Exp :
Patel, Kevin M; Strong, Alanna; Tohyama, Junichiro et al. (2015) Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis. Circ Res 116:789-96
Jin, Xueting; Freeman, Sebastian R; Vaisman, Boris et al. (2015) ABCA1 contributes to macrophage deposition of extracellular cholesterol. J Lipid Res 56:1720-6
Jin, Xueting; Xu, Qing; Champion, Keith et al. (2015) Endotoxin contamination of apolipoprotein A-I: effect on macrophage proliferation--a cautionary tale. Atherosclerosis 240:121-4
Freeman, Sebastian R; Jin, Xueting; Anzinger, Joshua J et al. (2014) ABCG1-mediated generation of extracellular cholesterol microdomains. J Lipid Res 55:115-27
Nickerson, Michael L; Bosley, Allen D; Weiss, Jayne S et al. (2013) The UBIAD1 prenyltransferase links menaquinone-4 [corrected] synthesis to cholesterol metabolic enzymes. Hum Mutat 34:317-29
Barthwal, Manoj K; Anzinger, Joshua J; Xu, Qing et al. (2013) Fluid-phase pinocytosis of native low density lipoprotein promotes murine M-CSF differentiated macrophage foam cell formation. PLoS One 8:e58054
Fredericks, William J; McGarvey, Terry; Wang, Huiyi et al. (2013) The TERE1 protein interacts with mitochondrial TBL2: regulation of trans-membrane potential, ROS/RNS and SXR target genes. J Cell Biochem 114:2170-87
Kruth, Howar S (2013) Fluid-Phase Pinocytosis of LDL by Macrophages: A Novel Target to Reduce Macrophage Cholesterol Accumulation in Atherosclerotic Lesions. Curr Pharm Des 19:5865-72

Showing the most recent 10 out of 22 publications