Hypertonicity (e.g. high NaCl) activates the esential osmoprotective transcription factor NFAT5 by increasing its abundance, nuclear localization and transactivating activity. It is activated by a network of signaling molecules, whose members we have continued to identify and characterize, as follows: Many high-NaCl-induced perturbations and protective responses are known, but the signaling pathways involved are less clear. Change in protein phosphorylation is a common mode of cell signaling, but there was no unbiased survey of protein phosphorylation in response to high NaCl. We used stable isotopic labeling of amino acids in cell culture coupled to mass spectrometry to identify changes in protein phosphorylation in human embryonic kidney (HEK 293) cells exposed to high NaCl. We reproducibly identify >8,000 unique phosphopeptides in 4 biological replicate samples with a 1% false discovery rate. High NaCl significantly changed phosphorylation of 253 proteins. Western analysis and targeted ion selection mass spectrometry confirm a representative sample of the phosphorylation events. We analyzed the affected proteins by functional category to infer how altered protein phosphorylation might signal cellular responses to high NaCl, including alteration of cell cycle, cyto/nucleoskeletal organization, DNA double-strand breaks, transcription, proteostasis, metabolism of mRNA, and cell death. Having previously found that high NaCl causes rapid exit of 14-3-3 isoforms from the nucleus, we used siRNA-mediated knockdown to test whether 14-3-3s contribute to the high NaCl-induced increase in the activity of NFAT5. We found that, when NaCl is elevated, knockdown of 14-3-3-βand/or 14-3-3-εdecreases NFAT5 transcriptional activity, as assayed both by luciferase reporter and by the mRNA abundance of the NFAT5 target genes aldose reductase and the sodium- and chloride-dependent betaine transporter, BGT1. Knockdown of other 14-3-3 isoforms does not significantly affect NFAT5 activity. 14-3-3-βand/or 14-3-3-εdo not act by affecting the nuclear localization of NFAT5, but by at least two other mechanisms: (1) 14-3-3-βand 14-3-3-εincrease protein abundance of NFAT5 and (2) they increase NFAT5 transactivating activity. When NaCl is elevated, knockdown of 14-3-3-βand/or 14-3-3-εreduces the protein abundance of NFAT5, as measured by Western blot, without affecting the level of NFAT5 mRNA, and the knockdown also decreases NFAT5 transactivating activity, as measured by luciferase reporter. The 14-3-3s increase NFAT5 protein, not by increasing its translation, but by decreasing the rate at which it is degraded, as measured by cycloheximide chase. It is not clear at this point whether the 14-3-3s affect NFAT5 directly or indirectly through their effects on other proteins that signal activation of NFAT5. Several studies pointed to a possible connection between nuclear translocation and DNA binding of NFAT5;however, the mechanism of NFAT5 nuclear translocation and the effect of DNA binding on retaining NFAT5 in the nucleus were largely unknown. Recent experiments showed that different mutations introduced in the DNA-binding loop and dimerization interface were important for DNA binding and some of them decreased the nuclear-cytoplasm ratio of NFAT5. To understand the mechanisms of these mutations, we modeled their effect on protein dynamics and DNA binding. We showed that the NFAT5 complex without DNA is much more flexible than the complex with DNA. Moreover, DNA binding considerably stabilizes the overall dimeric complex and the NFAT5 dimer is only marginally stable in the absence of DNA. Two sets of NFAT5 mutations from the same DNA-binding loop were found to have different mechanisms of specific and nonspecific binding to DNA. The R217A/E223A/R226A (R293A/E299A/R302A using isoform c numbering) mutant is characterized by significantly compromised binding to DNA and higher complex flexibility. On the contrary, the T222D (T298D in isoform c) mutation, a potential phosphomimetic mutation, makes the overall complex more rigid and does not significantly affect the DNA binding. Therefore, the reduced nuclear-cytoplasm ratio of NFAT5 can be attributed to reduced binding to DNA for the triple mutant, while the T222D mutant suggests an additional mechanism at work.

Project Start
Project End
Budget Start
Budget End
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
U.S. National Heart Lung and Blood Inst
Department
Type
DUNS #
City
State
Country
Zip Code
Wang, Hong; Ferraris, Joan D; Klein, Janet D et al. (2015) PKC-? contributes to high NaCl-induced activation of NFAT5 (TonEBP/OREBP) through MAPK ERK1/2. Am J Physiol Renal Physiol 308:F140-8
Wang, Rong; Ferraris, Joan D; Izumi, Yuichiro et al. (2014) Global discovery of high-NaCl-induced changes of protein phosphorylation. Am J Physiol Cell Physiol 307:C442-54
Izumi, Yuichiro; Burg, Maurice B; Ferraris, Joan D (2014) 14-3-3-? and -{varepsilon} contribute to activation of the osmoprotective transcription factor NFAT5 by increasing its protein abundance and its transactivating activity. Physiol Rep 2:e12000
Zhou, Xiaoming; Wang, Hong; Burg, Maurice B et al. (2013) High NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1. Am J Physiol Renal Physiol 305:F362-9
Burg, Maurice B; Ferraris, Joan D (2013) Salt, skeletons, and suicide. Focus on ""Hyperosmotic stress regulates the distribution and stability of myocardin-related transcription factor, a key modulator of the cytoskeleton"". Am J Physiol Cell Physiol 304:C113-4
Li, Minghui; Shoemaker, Benjamin A; Thangudu, Ratna R et al. (2013) Mutations in DNA-Binding Loop of NFAT5 Transcription Factor Produce Unique Outcomes on Protein-DNA Binding and Dynamics. J Phys Chem B :
Topanurak, Supachai; Ferraris, Joan D; Li, Jinxi et al. (2013) High NaCl- and urea-induced posttranslational modifications that increase glycerophosphocholine by inhibiting GDPD5 phosphodiesterase. Proc Natl Acad Sci U S A 110:7482-7
Zhou, Xiaoming; Wang, Hong; Burg, Maurice B et al. (2013) Inhibitory phosphorylation of GSK-3* by AKT, PKA, and PI3K contributes to high NaCl-induced activation of the transcription factor NFAT5 (TonEBP/OREBP). Am J Physiol Renal Physiol 304:F908-17
Gallazzini, Morgan; Heussler, Gary E; Kunin, Margarita et al. (2011) High NaCl-induced activation of CDK5 increases phosphorylation of the osmoprotective transcription factor TonEBP/OREBP at threonine 135, which contributes to its rapid nuclear localization. Mol Biol Cell 22:703-14
Zhou, Xiaoming; Izumi, Yuichiro; Burg, Maurice B et al. (2011) Rac1/osmosensing scaffold for MEKK3 contributes via phospholipase C-gamma1 to activation of the osmoprotective transcription factor NFAT5. Proc Natl Acad Sci U S A 108:12155-60

Showing the most recent 10 out of 14 publications