Treatment studies We are currently engaged in testing the ability of transcranial direct current brain polarization to modulate brain activity and facilitate functions, particularly learning. We are currently testing a new technique for increasing the focality and predictability of the effect. In the process, we are validating a physical model for current distribution in the head and exploring individual differences in response. Neurophysiological probe studies We have successfully shown changes in the motor cortex response to transcranial magnetic stimulation (TMS) that are linked to the expectation of reward. We are currently studying how this response varies with expected reward value. Using magnetic resonance spectroscopy to explore how cortical gamma aminobutyric acid (GABA) concentration changes during rewarded behavior and looking for correlations between GABA levels and the response to TMS within individuals. Collaborative work With support from a DARPA program on accelerated learning, we are collaborating with investigators at the MIND Institute at the University of New Mexico on using DC brain polarization to shorten the time required to attain behavioral and neuroimaging endpoints for expert status on learning tasks. In Phase I of this project, we have met DARPA 2X metrics for acceleration of threat detection learning. In Phase II we will deploy the technique in an ongoing military training program. In a collaboration with the Section on Biomedical Stochastic Physics, LIMB, NICHD, we are developing a novel system for diffuse optical tomography as a way of monitoring regional cortical blood flow in three dimensions without exposure to magnetic fields or cumbersome equipment.

Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
2009
Total Cost
$527,078
Indirect Cost
City
State
Country
Zip Code
Amyot, Franck; Kenney, Kimbra; Moore, Carol et al. (2018) Imaging of Cerebrovascular Function in Chronic Traumatic Brain Injury. J Neurotrauma 35:1116-1123
Kenney, Kimbra; Amyot, Franck; Moore, Carol et al. (2018) Phosphodiesterase-5 inhibition potentiates cerebrovascular reactivity in chronic traumatic brain injury. Ann Clin Transl Neurol 5:418-428
Bikson, Marom; Brunoni, Andre R; Charvet, Leigh E et al. (2018) Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop. Brain Stimul 11:465-480
Levy, Sarah; Gansler, David; Huey, Edward et al. (2018) Assessment of Patient Self-awareness and Related Neural Correlates in Frontotemporal Dementia and Corticobasal Syndrome. Arch Clin Neuropsychol 33:519-529
Wilkinson, Leonora; Koshy, Philip J; Steel, Adam et al. (2017) Motor cortex inhibition by TMS reduces cognitive non-motor procedural learning when immediate incentives are present. Cortex 97:70-80
Buch, Ethan R; Santarnecchi, Emiliano; Antal, Andrea et al. (2017) Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clin Neurophysiol 128:589-603
Heinitz, Sascha; Reinhardt, Martin; Piaggi, Paolo et al. (2017) Neuromodulation directed at the prefrontal cortex of subjects with obesity reduces snack food intake and hunger in a randomized trial. Am J Clin Nutr 106:1347-1357
Karamzadeh, Nader; Amyot, Franck; Kenney, Kimbra et al. (2016) A machine learning approach to identify functional biomarkers in human prefrontal cortex for individuals with traumatic brain injury using functional near-infrared spectroscopy. Brain Behav 6:e00541
Guevara, Andrea Brioschi; Demonet, Jean-Francois; Polejaeva, Elena et al. (2016) Association Between Traumatic Brain Injury-Related Brain Lesions and Long-term Caregiver Burden. J Head Trauma Rehabil 31:E48-58
Chernomordik, Victor; Amyot, Franck; Kenney, Kimbra et al. (2016) Abnormality of low frequency cerebral hemodynamics oscillations in TBI population. Brain Res 1639:194-9

Showing the most recent 10 out of 41 publications