We have explored the role of mitochondria in Parkinson's disease (PD). At least two gene products mutated in familial PD, PINK1 and Parkin, are now known to mediate autophagic removal of defective mitochondria suggesting that one cause of PD is an impairment of mitochondrial quality control. PINK1 is a kinase located on mitochondria whereas Parkin is an E3 ubiquitin ligase normally located in the cytosol. Upon mitochondrial damage Pink1 recruits cytosolic Parkin to mitochondria to mediate mitophagy revealing a cell biology pathway in mammalian cells where Pink1 works upstream of Parkin. We have found that PINK1 is rapidly turned over in cells. In healthy mitochondria PINK1 is constitutively imported into the inner membrane and degraded by the protease PARL, and maintained at very low levels. When mitochondria sustain damage PINK1 import and degradation is prevented allowing its accumulation on the outer mitochondrial membrane. Thus PINK1 acts as a sensor of mitochondria function. When PINK1 accumulates on the outer mitochondrial membrane of damaged organelles it recruits Parkin to mitochondria from the cytosol. Parkin recruitment requires PINK1 kinase activity but the substrate of PINK1 involved in this process remains unknown. Once on the mitochondria, Parkin ubiquitinates mitochondrial proteins including the GTPases Mfn1 and 2. The loss of ubiqutinated Mfn1 and 2 by proteosomal degradation prevents damaged mitochondria from fusing with healthy mitochondria thereby segregating them fordisposal. The ubiquitin chains Parkin forms on other mitochondrial proteins appear to signal the elimination of mitochondria by autophagy. We found that the proteosome and the AAA ATPase, p97/VCP, are required for Parkin mediated mitophagy further indicating the importance of ubiquitin in Parkin mediated mitophagy. Corroborating this model we have found that in cybrid cells that contain a mixture of functional mitochondria with wild type mitochondrial DNA and dysfunctional mitochondria with a mutation in mitochondrial DNA in the COX1 gene, increasing Parkin expression selectively eliminates the damaged mitochondria and enriches for the propagation of wild type mitochondrial DNA. Based on these results we predict that stimulation of the PINK1/Parkin pathway may facilitate mitochondrial quality control and may be of potential therapeutic benefit for patients with mitochondrial diseases and certain forms of Parkinson's disease. We have begun screening chemical libraries to identify agents that stimulate PINK1 expression and Parkin translocation. We have also completed RNAi screens to identify gene products participating in PINK1 recruitment of Parkin to mitochondria and Parkin stimulation of autophagosome engulfment of mitochondria.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Zip Code
Stolz, Alexandra; Putyrski, Mateusz; Kutle, Ivana et al. (2017) Fluorescence-based ATG8 sensors monitor localization and function of LC3/GABARAP proteins. EMBO J 36:549-564
Wang, Chunxin; Youle, Richard (2016) Cell biology: Form follows function for mitochondria. Nature 530:288-9
Richter, Benjamin; Sliter, Danielle A; Herhaus, Lina et al. (2016) Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A 113:4039-44
Nezich, Catherine L; Wang, Chunxin; Fogel, Adam I et al. (2015) MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol 210:435-50
Hasson, Samuel A; Fogel, Adam I; Wang, Chunxin et al. (2015) Chemogenomic profiling of endogenous PARK2 expression using a genome-edited coincidence reporter. ACS Chem Biol 10:1188-97
Lomash, Richa Madan; Gu, Xinglong; Youle, Richard J et al. (2015) Neurolastin, a Dynamin Family GTPase, Regulates Excitatory Synapses and Spine Density. Cell Rep 12:743-51
Yao, Yong; Fujimoto, Lynn M; Hirshman, Nathan et al. (2015) Conformation of BCL-XL upon Membrane Integration. J Mol Biol 427:2262-70
Lazarou, Michael; Sliter, Danielle A; Kane, Lesley A et al. (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309-314
Pickrell, Alicia M; Youle, Richard J (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85:257-73
Pickrell, Alicia M; Huang, Chiu-Hui; Kennedy, Scott R et al. (2015) Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress. Neuron 87:371-81

Showing the most recent 10 out of 42 publications