Matricellular proteins play diverse roles in modulating cell behavior by engaging specific cell surface receptors and interacting with extracellular matrix proteins, secreted enzymes, and growth factors. Studies of such interactions involving thrombospondin-1 have revealed several physiological functions and roles in the pathogenesis of injury responses and cancer, but the relatively mild phenotypes of mice lacking thrombospondin-1 suggested that thrombospondin-1 would not be a central player that could be exploited therapeutically. Recent research focusing on signaling through its receptor CD47, however, has uncovered more critical roles for thrombospondin-1 in acute regulation of cardiovascular dynamics, hemostasis, immunity, and mitochondrial homeostasis. Several of these functions are mediated by potent and redundant inhibition of the canonical nitric oxide pathway. Conversely, elevated tissue thrombospondin-1 levels in major chronic diseases of aging may account for the deficient nitric oxide signaling that characterizes these diseases, and experimental therapeutics targeting CD47 show promise for treating such chronic diseases as well as acute stress conditions that are associated with elevated thrombospondin-1 expression. Accidental or therapeutic exposure to ionizing radiation has severe physiological consequences and can result in cell death. We previously demonstrated that deficiency or blockade of the ubiquitously expressed receptor CD47 results in remarkable cell and tissue protection against ischemic and radiation stress. Antagonists of CD47 or its ligand THBS1/thrombospondin 1 enhance cell survival and preserve their proliferative capacity. However the signaling pathways that mediate this cell-autonomous radioprotection are unclear. We now report a marked increase in autophagy in irradiated T-cells and endothelial cells lacking CD47. Irradiated T cells lacking CD47 exhibit significant increases in formation of autophagosomes comprising double membrane vesicles visualized by electron microscopy and numbers of MAP1LC3A/B+ puncta. Moreover, we observed significant increases in BECN1, ATG5, ATG7 and a reduction in SQSTM1/p62 expression relative to irradiated wild-type T cells. We observed similar increases in autophagy gene expression in mice resulting from blockade of CD47 in combination with total body radiation. Pharmacological or siRNA-mediated inhibition of autophagy selectively sensitized CD47-deficient cells to radiation, indicating that enhanced autophagy is necessary for the prosurvival response to CD47 blockade. Moreover, re-expression of CD47 in CD47-deficient T cells sensitized these cells to death by ionizing radiation and reversed the increase in autophagic flux associated with survival. This study indicates that CD47 deficiency confers cell survival through the activation of autophagic flux and identifies CD47 blockade as a pharmacological route to modulate autophagy for protecting tissue from radiation injury.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIASC009172-24
Application #
8554028
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
24
Fiscal Year
2012
Total Cost
$846,593
Indirect Cost
Name
National Cancer Institute Division of Clinical Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Sipes, John M; Murphy-Ullrich, Joanne E; Roberts, David D (2018) Thrombospondins: Purification of human platelet thrombospondin-1. Methods Cell Biol 143:347-369
Kaur, Sukhbir; Elkahloun, Abdel G; Arakelyan, Anush et al. (2018) CD63, MHC class 1, and CD47 identify subsets of extracellular vesicles containing distinct populations of noncoding RNAs. Sci Rep 8:2577
Roberts, David D; Kaur, Sukhbir; Isenberg, Jeffrey S (2017) Regulation of cellular redox signaling by matricellular proteins in vascular biology, immunology, and cancer. Antioxid Redox Signal :
Stein, Erica V; Miller, Thomas W; Ivins-O'Keefe, Kelly et al. (2016) Secreted Thrombospondin-1 Regulates Macrophage Interleukin-1? Production and Activation through CD47. Sci Rep 6:19684
Kaur, Sukhbir; Roberts, David D (2016) Divergent modulation of normal and neoplastic stem cells by thrombospondin-1 and CD47 signaling. Int J Biochem Cell Biol 81:184-194
Soto-Pantoja, D R; Sipes, J M; Martin-Manso, G et al. (2016) Dietary fat overcomes the protective activity of thrombospondin-1 signaling in the Apc(Min/+) model of colon cancer. Oncogenesis 5:e230
Cook, Katherine L; Soto-Pantoja, David R; Clarke, Pamela A G et al. (2016) Endoplasmic Reticulum Stress Protein GRP78 Modulates Lipid Metabolism to Control Drug Sensitivity and Antitumor Immunity in Breast Cancer. Cancer Res 76:5657-5670
Soto-Pantoja, David R; Kaur, Sukhbir; Roberts, David D (2015) CD47 signaling pathways controlling cellular differentiation and responses to stress. Crit Rev Biochem Mol Biol 50:212-30
Lessey-Morillon, Elizabeth C; Roberts, David D (2015) Thrombospondin-1: an extracellular message delivered by macrophages that promotes aortic aneurysms. Circ Res 117:113-5
Kaur, Sukhbir; Schwartz, Anthony L; Miller, Thomas W et al. (2015) CD47-dependent regulation of H?S biosynthesis and signaling in T cells. Methods Enzymol 555:145-68

Showing the most recent 10 out of 48 publications