The PI and his team work on the scientific outcomes from the large and systematic survey for precision stellar elemental abundance analyses that is set out to map the spatial variations in the chemistry across the Milky Way Galactic disk. They employ the Apache Point Observatory Galactic Evolution Experiment (APOGEE) in the Sloan Digital Sky Survey (SDSS)-III survey, which is a large-scale, near-infrared (H-band), high-resolution (R ~ 30,000), high signal-to-noise (>100) spectroscopic survey of Milky Way stellar populations. The survey covers wavelengths from 1.51-1.68 microns which is a region that includes useful absorption lines from about 15 chemical elements, including alpha, odd-numbered, and iron peak elements. A three-year bright-time observing campaign from 2011-2014 will enable APOGEE to observe about 100,000 giants stars across the Galactic bulge, disk and halo, with the vast majority of these stars in the disk. This large catalog of chemical abundance data for stars all across the Milky Way from APOGEE is used to address a number of key questions related to the chemistry of the Galactic disk. The analysis of the data from the APOGEE pipeline gives the stellar parameters (e.g., effective temperatures, gravity, metallicity) and abundances for about 15 elements which are used to deduce additional stellar properties (star-by-star extinctions, distances, ages) that are needed to map the abundances in the disk and to constrain models of Galactic chemical evolution. These maps provide the three-dimensional distributions represent an order of magnitude improvement in what has been achieved before in terms of numbers of stars included, numbers of chemical elements probed, homogeneity in the collection, reduction, and calibration of the data, and spatial coverage, including vast regions of the disk never before probed because of the limitations from dust. As part of this work, the team plans to release a value-added APOGEE catalog of extinctions, distances and age estimates, along with the APOGEE data on abundances of about 15 chemical elements for about 100,000 stars from the thin and thick disks, and the reduction of these data into multidimensional maps of elemental abundances. These data should have significant value to the wider community of Galactic chemical evolution modelers.

Agency
National Science Foundation (NSF)
Institute
Division of Astronomical Sciences (AST)
Type
Standard Grant (Standard)
Application #
1109888
Program Officer
Glen Langston
Project Start
Project End
Budget Start
2011-08-01
Budget End
2015-07-31
Support Year
Fiscal Year
2011
Total Cost
$76,402
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
City
Tucson
State
AZ
Country
United States
Zip Code
85719