This project aims to build Smart Buttons, a bio-enabled wearable device weighing less than 2 grams. A network of smart buttons will be built that scales from a few buttons for each person individually to over a hundred of buttons for a crowd. This network simultaneously records, generates, compiles posture and interaction data spanning various scenarios, time scales and physical settings. The smart button platform will be able to assist domain scientists in understanding human posture and behavior as well as social interaction in a crowd.

The intellectual contributions include a novel bio-enable design philosophy and a set of concrete approaches to seamlessly integrate computation with bio-enabled functions. Subjects (e.g., humans) are treated not only as the source of information, but also as the source of functionality. Unlike electronic computation functions, bio-enabled functions are highly unpredictable and have inherent uncertainty in both measurement and control. The research explores (i) how computation from electronic systems interact with physical bio-enabled functions from living subjects, and (ii) how to integrate these functions. The proposal work first demonstrates a few cases of bio-enabled functions and their effectiveness, including bio-enabled proximity detection, ranging, bio-enabled on-demand sensing, bio-enabled networking and energy management. After these case studies, reusable patterns are extracted, and principles and methodologies to design bio-enabled wearable devices are derived.

The results of this research can be used in the future by domain scientists to support (i) individual's behavior predictions and generalizations, and (ii) crowd social interaction modeling and control. The broader impact of this work includes (i) utilizing the smart button technology to analyze teaching effectiveness and reveal the issues and desired features in a teaching environment; (ii) improving curriculum development with hand-on smart button projects; (iii) raising interest in technology among K-12 students and under-represented minority groups through smart button demos in open houses; and (iv) supporting talented female and minority PhD students to successfully accomplish their doctoral studies. The ultimate impact of the smart button technology is to provide a low-cost open experimental platform for behavior/social scientists, leading to a solid foundation for a new science of social interaction. The principles based on bio-feedback can give rise to new paradigms, principles, theory and methods in computer system control with bio-in-the-loop.

Agency
National Science Foundation (NSF)
Institute
Division of Computer and Network Systems (CNS)
Type
Standard Grant (Standard)
Application #
1525235
Program Officer
Marilyn McClure
Project Start
Project End
Budget Start
2015-10-01
Budget End
2018-09-30
Support Year
Fiscal Year
2015
Total Cost
$268,999
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
City
Minneapolis
State
MN
Country
United States
Zip Code
55455