The amount of new data generated by humanity in the past year exceeds that created in all of human history before. The processing demands of this data are driving the continued need for greater computational power, in domains including big data analytics, artificial intelligence, and augmented reality, serving technologies including personal, medical, research, engineering, finance, and weather prediction. As "Moore's Law" of the semiconductor industry - which has guaranteed continued advance of computing power in the last 50 years - has ground to a halt in the past decade, new computational paradigms are being sought to remedy this dire situation. Quantum information technology is the new and ultimate frontier for signal processing and computing and leverages the unintuitive laws of our universe that hold on small scales. 50-100 qubit processors have been developed by Intel, IBM and Google, but quantum optical networks, needed to network them into "quantum data centers" in a way similar to their conventional analogues, are missing. This project aims to fill that gap by developing a new electronic-photonic chip technology and framework to allow creation of electronic-photonic quantum systems-on-chip (epQSoCs). epQSoCs combine light, electronic circuits, and quantum functions on a single microchip that can provide a widely deployable technology platform for quantum networks. The project will combine interdisciplinary expertise in photonics, electronic systems, and quantum communications to demonstrate the first epQSoC. A single-chip, "wall-plug" source of quantum correlated photon pairs, this epQSoC is a fundamental building block for more complex epQSoCs and for quantum networks. By integrating several components and novel capabilities never previously integrated in a single chip, this source will provide new levels of photon-pair source performance. The interdisciplinary project team will also educate a new generation of engineers in this emerging new technology area to foster innovation, excellence and global leadership in the United States.

A "wall plug" single-chip source of photon pairs, a fundamental building block of most quantum photonic systems, will be demonstrated having a high efficiency, rate and reconfigurability to produce factorizable quantum states and allow heralding of pure single photons. No such integrated device exists despite the fact that a rack-mounted fiber-nonlinearity-based source of this kind for lab use has been commercialized for almost a decade. The proposed project aims to change the quantum technology landscape with the demonstration of a fully integrated single-chip quantum pair source system. The chip photonic circuit will contain photonic elements for pre- and post-source linear pump filtering, a resonant nonlinear pair generator, pump pulse carver to allow active matching of the pump pulse length to the source's resonant bandwidth in order to control the produced photons joint spectral intensity (to yield a factorizable or other engineered biphoton states), and an ultra-low loss interface to fiber. The proposed approach addresses a number of challenges that arise in integration, on-chip filtering, and real-time control. In addition to standalone operation, the pair source will be the first implementation of an electronic-photonic quantum system-on-chip (epQSoC) and a key building block for more complex integrated quantum systems. The proposed epQSoCs will be implemented in a commercial 45nm CMOS electronic-photonic platform (with potential for integrating single-photon detectors on chip as well). The project will create the technology framework (block libraries, tools, models and design methodologies) for low-cost, rapid innovation and design of sophisticated epQSoCs. This framework, along with associated educational materials and experiences will help create a new crop of engineers that are capable of tackling the complex, multidisciplinary nature of quantum information systems. Educational and outreach activities will provide exposure and training to a new generation of students and future leaders in this field, with special focus on underrepresented students.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Project Start
Project End
Budget Start
2018-10-01
Budget End
2021-09-30
Support Year
Fiscal Year
2018
Total Cost
$758,000
Indirect Cost
Name
Boston University
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02215