Non-technical paragraph: Every habitat on earth host its own microbiome, which can include bacteria, viruses, fungi, and protists. Recognition of the diversity and complexity of microbial communities that colonize humans, plants, animals, soil, and water has changed in fundamental ways how we think about the relationships between big and small organisms, as well as our basic understanding of disease, health, and immunity. Collectively, there is widespread recognition of the significant roles that microbiomes play in organismal and ecosystem health and functioning, and significant incentives to harness this potential. Private investments in microbiome research have expanded dramatically over the past decade, with hundreds of companies focusing on the potential manipulation or management of microbiomes in human and animal medicine and in agriculture. Despite the expanding research footprint, there have been remarkably few deliberate efforts to engage researchers across the breadth of microbiome science in discussions of key resource needs?conceptual, technical, or analytical?to support cross-cutting advances. The project will support a workshop bringing together 60+ scientists in person, plus another 100+ scientists virtually, including researchers working on plant, animal, environmental, and human microbiomes. Participants will use ecology and evolutionary biology as an integrating framework, as they provide a powerful context for integrative, cross-discipline discussion. Small-group and interactive sessions will stimulate researchers to identify key resource and knowledge gaps across microbiome science, conceptual and theoretical foundations that can advance hypothesis testing, big ideas to drive advances in microbiome applications, and a path forward for collaborative research and synthetic analyses.

Technical paragraph: Significant technical innovations have propelled exponential increases in the volume of microbiome data generated over the past decade. Yet development of conceptual, theoretical, and practical infrastructure to advance our collective understanding of microbiomes lags behind. Microbiome research suffers from a lack of reliance on explicit conceptual frameworks for ecological and evolutionary hypothesis testing, and there have been few attempts to develop generalizable models for microbiome community dynamics or assembly. Moreover, fragmentation of research efforts across systems (animal, human, plant, environmental), and even among researchers using different approaches to study the same system, has restricted opportunities to identify common principles of microbiome structure or organization. This workshop will address these gaps, targeting 4 objectives: 1. Explore cross-cutting themes and key challenges in microbiome science; 2. Facilitate advances in the development of rigorous ecological foundations and hypothesis-testing within microbiome research; 3. Stimulate the search for generalizable concepts, principles, and language for microbiome assembly and functions; 4. Identify key cross-community knowledge and resource gaps and opportunities for advancing the field. The workshop will provide significant opportunities for cross-disciplinary scientific interactions to advance the microbiome research community. Early-career post-doctoral scientists will be enlisted to serve as virtual discussion leads, providing an opportunity to develop skills in distance communication to support new models for scientific meetings and education. Collectively, this workshop will identify critical gaps in resources and understanding of microbiomes across disciplines, and stimulate community-wide, collaborative efforts to address these key resource and knowledge gaps.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Agency
National Science Foundation (NSF)
Institute
Division of Integrative Organismal Systems (IOS)
Type
Standard Grant (Standard)
Application #
1944020
Program Officer
Joanna Shisler
Project Start
Project End
Budget Start
2019-09-01
Budget End
2021-08-31
Support Year
Fiscal Year
2019
Total Cost
$99,000
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
City
Minneapolis
State
MN
Country
United States
Zip Code
55455