The goal of this proposal is to examine how presynaptic Neurexins (Nrxns) at serotonin (5-HT) synapses impact 5-HT signaling and social behavior. Extensive 5-HT axon terminal innervation throughout the brain corroborates 5-HT?s modulatory role in numerous behaviors including social behaviors, reward, emotion regulation, and learning and memory. Abnormal brain 5-HT levels and function are implicated in Autism Spectrum Disorder (ASD). While 5-HT therapeutics are often used to treat ASD, variable improvements in symptomatology require further investigation of 5-HT-mediated pathology. Many different genes contribute to increased ASD susceptibility and clinical presentation variability. Notably, synaptic dysfunction, specifically dysregulation of synaptic excitation and inhibition, remains a hallmark of ASD pathogenesis. Nrxns are presynaptic cell adhesion molecules that are well characterized in maintaining synapse function for proper neural circuit assembly. The three Nrxn genes transcribed from two promoters (? and ?) express six principal Nrxn isoforms (?Nrxn1-3, ?Nrxn 1-3). Additionally, mutations in Nrxn1 and Nrxn2 genes have been reported in ASD. In the current literature, the role of Nrxns at 5-HT synapses has yet to be investigated. Given that aberrant Nrxn and 5-HT function independently contribute to signaling pathology and social behavior impairments, it is critical to understand how Nrxn-mediated 5-HT neurotransmission participates in pathological mechanisms underlying the core deficits of ASD. Here, I will explore how 5-HT signaling mediated through Nrxns regulates social behaviors (Aim 1) and how Nrxns regulate 5-HT circuits relevant to social behaviors (Aim 2). Our group has created a novel mouse model in which the three Nrxn genes are selectively deleted in 5-HT neurons. My preliminary studies indicate that the loss of Nrxns at 5-HT synapses impairs social recognition memory and social reward preference. The hippocampus and nucleus accumbens, respectively, are crucial in these behaviors.
In Aim 1, I will determine whether 5-HTergic Nrxns are critical for social behaviors through completion of social (and other complex) behavior studies. In addition, I will explore (i) if and (ii) how 5-HT is necessary for social behaviors using (i) 5-HT therapeutics to augment 5-HT function prior to social behavior studies and (ii) in vivo microdialysis to measure extracellular 5-HT levels during social behavior.
In Aim 2, I will perform a mouse breeding and lentiviral rescue approach to determine whether specific Nrxns control social behavior. Furthermore, I will use immunohistochemical and electrophysiological approaches to identity how Nrxn proteins regulate excitatory and inhibitory synapse distribution and physiology. A close examination of Nrxns in 5-HT synaptic function is necessary to shed new light on social behavior disturbances in ASD.

Public Health Relevance

The diverse clinical presentations of individuals with Autism Spectrum Disorder (ASD) highlight the need to explore shared pathology in synaptic function and serotonin signaling. The current project will investigate the role of Neurexins, ASD risk genes, at serotonin synapses in regulating serotonin neurotransmission and social behavior. The long-term goal of this proposal is to provide foundational knowledge to aid in the development of more targeted 5-HT therapeutics to treat social behavior difficulties in ASD.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Individual Predoctoral NRSA for M.D./Ph.D. Fellowships (ADAMHA) (F30)
Project #
1F30MH122146-01A1
Application #
9992953
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Driscoll, Jamie
Project Start
2020-05-11
Project End
2025-05-10
Budget Start
2020-05-11
Budget End
2021-05-10
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Massachusetts Medical School Worcester
Department
Neurology
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655