Human JC polyomavirus (JCV) is the causative agent of progressive multifocal leukoencephalopathy (PML), a life-threatening demyelinating disease of the central nervous system (CNS) resulting from infection of oligodendrocytes. JCV infection is prevalent in the human population, where it persists lifelong as an asymptomatic infection in healthy individuals. JCV-induced PML manifests in individuals immunosuppressed by HIV/AIDS, leukemia, allograft transplantation, or, more recently, monoclonal antibody-mediated therapy for autoimmune and inflammatory diseases. Natalizumab, a monoclonal antibody therapy for treatment of multiple sclerosis, carries a risk for PML; incidence of PML in these patients rises with duration of treatment. This therapy is intended to prevent migration of autoimmune T cells to their target tissues, but blockade of trafficking of JCV-specific T cells into the CNS is generally considered its adverse consequence. JCV isolated from PML patients were found to have mutations in the major capsid protein VP1 and the non-coding control region (NCCR), implicating virus-associated risk factors in addition to host immune compromise. Several specific VP1 mutations have been identified, all of which are single amino acid substitutions that map to sialic acid binding sites, which are involved in attachment and entry of virus into host cells. Species-specificity of polyomaviruses has severely impeded development of a tractable JCV-PML animal model, and as a result our understanding of the pathogenesis of PML is limited. For example, it remains to be determined if mutations in VP1 alter virulence, and the role that immunosuppression plays in disease progression. The goal of this project is to develop a model of PML in mice using mouse polyomavirus (MPyV) to investigate how virus capsid mutations, adaptive immune system deficiencies, and treatment with natalizumab contribute to induction of polyomavirus- induced CNS disease. Introduction of a PML-associated substitution into an analogous site in VP1 of MPyV is hypothesized to increase the severity of CNS disease in mice by making MPyV neurotropic, allowing infection and damage of glial cells, including oligodendrocytes. Shifts in tropism will be determined by quantitative polymerase chain reaction (PCR) to assess viral replication efficiency, immunofluorescence microscopy to define infected CNS cells, and histopathologic evaluation of CNS injury. As in human PML, CNS infection is likely exacerbated by immunosuppression. Using therapy similar to natalizumab in an MPyV CNS infection model, flow cytometry-based phenotypic and functional analyses will be used to determine the mechanisms by which immunosuppression contributes to pathogenesis. Successful development of this MPyV infection model would provide the opportunity to explore mechanisms of polyomavirus CNS pathogenesis in a natural host.

Public Health Relevance

Human JC polyomavirus (JCV), which asymptomatically infects the majority of healthy individuals, is the cause of progressive multifocal leukoencephalopathy (PML), a rare but life-threatening neurodegenerative disease that can present in patients with HIV/AIDS, those taking immunosuppressive drugs for autoimmune diseases or post-transplant graft acceptance, and those with hematological disorders. There are currently no effective antiviral treatments for JCV and the mechanism of PML remains poorly understood due to lack of an animal model. The goal of this project is to develop a model of PML in mice to identify risk factors, determine the mechanism of the disease, and test potential treatment options.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Predoctoral Individual National Research Service Award (F31)
Project #
5F31NS083336-02
Application #
8837920
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Wong, May
Project Start
2014-01-01
Project End
2015-12-31
Budget Start
2015-01-01
Budget End
2015-12-31
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Pennsylvania State University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
129348186
City
Hershey
State
PA
Country
United States
Zip Code
17033
Shwetank; Abdelsamed, Hossam A; Frost, Elizabeth L et al. (2017) Maintenance of PD-1 on brain-resident memory CD8 T cells is antigen independent. Immunol Cell Biol 95:953-959
Qin, Qingsong; Shwetank; Frost, Elizabeth L et al. (2016) Type I Interferons Regulate the Magnitude and Functionality of Mouse Polyomavirus-Specific CD8 T Cells in a Virus Strain-Dependent Manner. J Virol 90:5187-99
Frost, Elizabeth L; Kersh, Anna E; Evavold, Brian D et al. (2015) Cutting Edge: Resident Memory CD8 T Cells Express High-Affinity TCRs. J Immunol 195:3520-4