The goal of this proposal is to dissect the molecular signaling between microglia and neurons that regulates synapse elimination in response to changes in sensory experience. Despite compelling evidence that microglia, the resident brain macrophages, play important roles in eliminating synapses in development and disease, the precise neuron-to-microglia molecular signaling that drives this process is poorly understood. I recently discovered a signaling pathway necessary for microglia-mediated synapse elimination by utilizing the well-described circuitry of the mouse barrel cortex circuit as a model to manipulate sensory experience and dampen neuronal activity. Here I found microglia robustly engulf synapses in the barrel cortex following either whisker lesioning or trimming, and that this engulfment is dependent on the microglial CX3CR1 receptor and its canonical neuronal ligand, CX3CL1, but not complement. Using single-cell RNAseq I also found that neuronal Cx3cl1 was not differentially regulated in the cortex following whisker removal, but the protease Adam10, known to cleave membrane-bound CX3CL1 into a soluble form, is increased following lesioning. Importantly, pharmacological inhibition of ADAM10 resulted in synapse elimination defects that phenocopied CX3CR1 and CX3CL1-deficient mice. These data suggest that post-translational modification of neuronal CX3CL1 by ADAM10 is required to regulate microglial synapse elimination in the cortex following whisker removal. Several exciting new questions have now arisen, which I will tackle in this proposal: 1) What is the cellular source of ADAM10 and is it localized to synapses (Aim 1)? 2) Do other subcortical synapses within the barrel circuit remodel via ADAM10-CX3CL1-CX3CR1 signaling and does this differ between whisker lesioning and trimming (Aim 2)? I hypothesize ADAM10 is derived from layer IV excitatory neurons to regulate microglia- mediated synapse remodeling and that ADAM10 signaling is specific for cortical synapse rewiring after whisker trimming and lesioning, but not for sub-cortical synapse remodeling. To test this hypothesis, I have acquired powerful in vivo molecular genetic tools to manipulate ADAM10 function in specific cells. I have also developed collaborations to learn and perform cutting-edge whole tissue clearing by iDISCO to assess structural remodeling of entire circuits. Finally, I have a strong mentoring team that includes my mentor Dr. Dorothy Schafer with expertise in microglial function within neural circuits, my co-mentor Dr. Andrew Tapper with expertise in structural and functional mapping of brain circuits, and collaborators with expertise in iDISCO. Together, I am in a strong position to molecularly dissect how ADAM10 modulates neuron-microglia signaling necessary for remodeling brain circuits. This could be highly relevant for neurodegenerative disease where microglial dysfunction, synapse loss, and ADAM10 have been implicated. In the process, I will receive training in a variety of microscopy and molecular genetic approaches that will provide a foundation for my future career as an independent principle investigator at an academic institution focused on dissecting functions for glial cells within neural circuits.
The aim of this proposal is to determine how neurons and resident immune cells of the brain called microglia communicate to regulate neural circuits following manipulation of sensory experience. I will now explore how ADAM10, a recently identified Alzheimer?s disease risk gene, modulates neural-immune signaling necessary for regulating neural circuit remodeling. This will further our understanding of microglial function in the brain and could have important implications for aberrant microglia activity in neurodegenerative disease.