Our objective is to develop a major center for research in the area of gene structure and function at Hunter College - CUNY, encompassing research activities ranging from the molecular to the cellular levels of organization. The theme responds to timely opportunities for major research advances, enthusiastic student interest, and strong academic and industrial employment opportunities for emerging trained scientists in this area. Selected active research faculty together with research associates, graduate and undergraduate research students and technical support personnel from the Biology and Chemistry Departments of Hunter will be initially involved. Hunter College is now in a unique period of institutional expansion, with two new 17-story buildings just opened in Fall 1984 providing an unprecedented opportunity for a major step forward in science department development. The elements of our proposal are a concerted increase and development of staff, specialized laboratories and instrumentation, shared research resources in critical areas where needs and interests of research groups overlap, and many additional scientific activities which combined can result in a unique entity in American science: a major research capability in a minority public university. Minority scientists are significantly under-represented in gene structure and function areas. Specific initiatives to increase the number of minority faculty and staff at Hunter and to facilitate career development for the graduate and postdoctoral students who will become the independent minority scientists of the future are integral to our proposed development.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Research Centers in Minority Institutions Award (G12)
Project #
5G12RR003037-03
Application #
3058763
Study Section
(SRC)
Project Start
1985-09-30
Project End
1990-09-29
Budget Start
1987-09-30
Budget End
1988-09-29
Support Year
3
Fiscal Year
1987
Total Cost
Indirect Cost
Name
Hunter College
Department
Type
Schools of Arts and Sciences
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10065
Luine, Victoria; Serrano, Peter; Frankfurt, Maya (2018) Rapid effects on memory consolidation and spine morphology by estradiol in female and male rodents. Horm Behav :
Avila, Jorge A; Alliger, Amber A; Carvajal, Brigett et al. (2017) Estradiol rapidly increases GluA2-mushroom spines and decreases GluA2-filopodia spines in hippocampus CA1. Hippocampus 27:1224-1229
Gupta, Rupal; Huang, Wenlin; Francesconi, Lynn C et al. (2017) Effect of positional isomerism and vanadium substitution on 51V magic angle spinning NMR Spectra Of Wells-Dawson polyoxotungstates. Solid State Nucl Magn Reson 84:28-33
Kiprowska, Magdalena J; Stepanova, Anna; Todaro, Dustin R et al. (2017) Neurotoxic mechanisms by which the USP14 inhibitor IU1 depletes ubiquitinated proteins and Tau in rat cerebral cortical neurons: Relevance to Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 1863:1157-1170
Urbanski, Mateusz M; Kingsbury, Lyle; Moussouros, Daniel et al. (2016) Myelinating glia differentiation is regulated by extracellular matrix elasticity. Sci Rep 6:33751
Oliver, Chicora F; Kabitzke, Patricia; Serrano, Peter et al. (2016) Repeated recall and PKM? maintain fear memories in juvenile rats. Learn Mem 23:710-713
He, Huifang; Deng, Kangwen; Siddiq, Mustafa M et al. (2016) Cyclic AMP and Polyamines Overcome Inhibition by Myelin-Associated Glycoprotein through eIF5A-Mediated Increases in p35 Expression and Activation of Cdk5. J Neurosci 36:3079-91
Carbone, Lorenzo; Verrelli, Roberta; Gobet, Mallory et al. (2016) Insight on the Li2S electrochemical process in a composite configuration electrode. New J Chem 40:2935-2943
IƱiguez, Sergio D; Aubry, Antonio; Riggs, Lace M et al. (2016) Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice. Neurobiol Stress 5:54-64
Babkirk, Sarah; Luehring-Jones, Peter; Dennis-Tiwary, Tracy A (2016) Computer-mediated communication preferences predict biobehavioral measures of social-emotional functioning. Soc Neurosci 11:637-51

Showing the most recent 10 out of 221 publications