This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Cancer is one of the leading causes of death in the United States and in the world. Many cancers result from activation of proto-oncogenes or inactivation of tumor suppressor genes. In most cases, the precise mechanisms through which these oncoproteins/tumor suppressors work are poorly understood. Msp58 (microspherule protein 58 kDa), an oncoprotein, is evolutionarily conserved from fly to human and has been shown to play roles in various nuclear processes, including transcriptional regulation and mRNA export. Over-expression of Msp58 has been shown to induce cell transformation. The precise mechanism by which Msp58 carries out its normal nuclear functions is not known, nor is it understood why aberrant expression of Msp58 leads to cellular transformation. This project aims to shed light on both of these questions. We have identified two novel interacting partners of Msp58: nucleoporin Tpr (translocated promoter region) and E3 ubiquitin ligase EDD (E3 identified by differential display). Tpr has been implicated in nuclear organization and in the nuclear export of protein and messenger RNAs (mRNAs). EDD has been shown to play a critical role in cell proliferation and differentiation. We hypothesize that Msp58 carries out its functions by regulating the locations of some of its associating factors in the nucleus by, at least in part, interacting with Tpr;and EDD regulates the stability and/or the function of Msp58, directly or indirectly, through its ubiquitin ligase activity. To test these hypotheses, in this project, we will characterize the interaction of Msp58 with Tpr and EDD, and determine the functions of these complexes. Deletion analyses followed by site-directed mutagenesis will be used to map the regions of the proteins that mediate their interactions. The locations of proteins and mRNA will be determined by immunofluorescence confocal microscopy and immunoelectron microscopy. We will explore the functions of individual components of the complexes in cultured cells in which expression of the components will be altered, either silenced by RNA interference or overexpressed ectopically. A long-term goal of this project is to explore how Msp58's over-expression leads to cellular transformation. Given that Msp58's interacting proteins, such as proliferation-associated nucleolar protein p120 and EDD, are often aberrantly expressed in various cancers, including hepatocellular carcinoma, and breast, lung and ovarian cancers, this study, therefore, will not only advance our understanding of the fundamental cell biology underlying nuclear organization and nuclear transport, but also shed light on understanding the pathogenesis of cancers.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Research Centers in Minority Institutions Award (G12)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-B (02))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Hunter College
Schools of Arts and Sciences
New York
United States
Zip Code
Luine, Victoria; Serrano, Peter; Frankfurt, Maya (2018) Rapid effects on memory consolidation and spine morphology by estradiol in female and male rodents. Horm Behav :
Avila, Jorge A; Alliger, Amber A; Carvajal, Brigett et al. (2017) Estradiol rapidly increases GluA2-mushroom spines and decreases GluA2-filopodia spines in hippocampus CA1. Hippocampus 27:1224-1229
Gupta, Rupal; Huang, Wenlin; Francesconi, Lynn C et al. (2017) Effect of positional isomerism and vanadium substitution on 51V magic angle spinning NMR Spectra Of Wells-Dawson polyoxotungstates. Solid State Nucl Magn Reson 84:28-33
Kiprowska, Magdalena J; Stepanova, Anna; Todaro, Dustin R et al. (2017) Neurotoxic mechanisms by which the USP14 inhibitor IU1 depletes ubiquitinated proteins and Tau in rat cerebral cortical neurons: Relevance to Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 1863:1157-1170
Urbanski, Mateusz M; Kingsbury, Lyle; Moussouros, Daniel et al. (2016) Myelinating glia differentiation is regulated by extracellular matrix elasticity. Sci Rep 6:33751
Oliver, Chicora F; Kabitzke, Patricia; Serrano, Peter et al. (2016) Repeated recall and PKM? maintain fear memories in juvenile rats. Learn Mem 23:710-713
He, Huifang; Deng, Kangwen; Siddiq, Mustafa M et al. (2016) Cyclic AMP and Polyamines Overcome Inhibition by Myelin-Associated Glycoprotein through eIF5A-Mediated Increases in p35 Expression and Activation of Cdk5. J Neurosci 36:3079-91
Carbone, Lorenzo; Verrelli, Roberta; Gobet, Mallory et al. (2016) Insight on the Li2S electrochemical process in a composite configuration electrode. New J Chem 40:2935-2943
IƱiguez, Sergio D; Aubry, Antonio; Riggs, Lace M et al. (2016) Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice. Neurobiol Stress 5:54-64
Babkirk, Sarah; Luehring-Jones, Peter; Dennis-Tiwary, Tracy A (2016) Computer-mediated communication preferences predict biobehavioral measures of social-emotional functioning. Soc Neurosci 11:637-51

Showing the most recent 10 out of 221 publications