Research on fundamental neurochemical mechanisms that are the substrate for the actions of drugs that affect the brain, including drugs of abuse, will be continued in a number of areas. Areas that will be the focus of research in coming years include continued studies on the novel messenger molecules, nitric oxide and carbon monoxide. Studies of inositol phosphates will be continued. Particular focus will be devoted to recent advances in the laboratory in characterizing immunophilins in the nervous system.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Scientist Award (K05)
Project #
2K05DA000074-16
Application #
2115878
Study Section
Drug Abuse Biomedical Research Review Committee (DABR)
Program Officer
Pollock, Jonathan D
Project Start
1980-07-01
Project End
2000-06-30
Budget Start
1995-07-01
Budget End
1996-06-30
Support Year
16
Fiscal Year
1995
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Yuan, Guoxiang; Vasavda, Chirag; Peng, Ying-Jie et al. (2015) Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal 8:ra37
Peng, Ying-Jie; Makarenko, Vladislav V; Nanduri, Jayasri et al. (2014) Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema. Proc Natl Acad Sci U S A 111:1174-9
Bang, Sookhee; Kim, Seyun; Dailey, Megan J et al. (2012) AMP-activated protein kinase is physiologically regulated by inositol polyphosphate multikinase. Proc Natl Acad Sci U S A 109:616-20
Dailey, Megan J; Kim, Seyun (2012) Inositol polyphosphate multikinase: an emerging player for the central action of AMP-activated protein kinase. Biochem Biophys Res Commun 421:1-3
Kim, Seyun; Kim, Sangwon F; Maag, David et al. (2011) Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase. Cell Metab 13:215-21
Maag, David; Maxwell, Micah J; Hardesty, Douglas A et al. (2011) Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB. Proc Natl Acad Sci U S A 108:1391-6
Ho, Gary P H; Selvakumar, Balakrishnan; Mukai, Jun et al. (2011) S-nitrosylation and S-palmitoylation reciprocally regulate synaptic targeting of PSD-95. Neuron 71:131-41
Mustafa, Asif K; Sikka, Gautam; Gazi, Sadia K et al. (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259-68
Sen, Nilkantha; Snyder, Solomon H (2010) Protein modifications involved in neurotransmitter and gasotransmitter signaling. Trends Neurosci 33:493-502
Paul, B D; Snyder, S H (2010) The unusual amino acid L-ergothioneine is a physiologic cytoprotectant. Cell Death Differ 17:1134-40

Showing the most recent 10 out of 28 publications