This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Rapid increases in bone mass occur during puberty. Optimizing calcium absorption (Ca-abs) and bone calcium deposition (Vo+) during puberty can enhance peak bone mass and ultimately decrease the lifetime risk of osteoporosis. In this study, we will determine the influence of hormonal, genetic and dietary factors that lead to maximal Ca-abs and Vo+ in pubertal boys and girls. Hypotheses: Our overall hypotheses are that dynamic changes in mineral metabolism in early adolescence are based on identifiable hormonal and genetic factors and that specific nutritional interventions can enhance bone mass accumulation. Specifically, in this proposal we will evaluate the following: 1) Early nighttime increases in pubertal hormones will be closely correlated to Ca-abs and Vo+ in both boys and girls. In contrast, serum leptin will be negatively correlated with Vo+; 2) Putative genetic markers of osteoporosis, including vitamin D receptor polymorphisms, will be significantly correlated to Ca-abs and Vo+; 3) The addition of NDO will increase Ca-abs and Vo+ in pubertal children receiving recommended dietary calcium intakes. We will enroll 50 girls and 50 boys who are healthy, 10th to 90th %ile body mass index for age, and Tanner Stage 2 or 3. They will participate in comprehensive dual-tracer calcium stable isotopic kinetic studies. Results will be compared with pubertal hormonal studies, biochemical bone turnover markers, and dual-energy X-ray absorptiometry (DXA) measures of whole body and regional bone mineral content. Genetic markers related to bone mass will be assessed and related to both hormonal and calcium kinetic measurements. After these baseline studies, subjects will be randomized to receive calcium fortified foods either with or without added NDO. Calcium absorption will be measured again after 2 months. After 12 months, the baseline calcium kinetic, hormonal and DXA studies will be repeated to assess the effects both of pubertal development and the dietary intervention. At the conclusion of that study, supplementation with NDO will be stopped and a final DXA study performed 12 months later to assess whether bone mass differences identified during supplementation were maintained post-intervention. Conclusions: By identifying the relationships among hormonal changes of puberty, genetics and calcium metabolism, the characteristics leading to maximal calcium absorption and utilization can be identified. These insights will enable interventional strategies to enhance bone mass to be specifically related to identifiable population characteristics, with the ultimate goal of decreasing the incidence and severity of bone loss and osteoporosis.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
General Clinical Research Centers Program (M01)
Project #
5M01RR000188-42
Application #
7374929
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2005-12-01
Project End
2006-11-30
Budget Start
2005-12-01
Budget End
2006-11-30
Support Year
42
Fiscal Year
2006
Total Cost
$12,097
Indirect Cost
Name
Baylor College of Medicine
Department
Pediatrics
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Michalsky, Marc P; Inge, Thomas H; Jenkins, Todd M et al. (2018) Cardiovascular Risk Factors After Adolescent Bariatric Surgery. Pediatrics 141:
Lau, Chantal (2018) Breastfeeding Challenges and the Preterm Mother-Infant Dyad: A Conceptual Model. Breastfeed Med 13:8-17
Hunsaker, Sanita L; Garland, Beth H; Rofey, Dana et al. (2018) A Multisite 2-Year Follow Up of Psychopathology Prevalence, Predictors, and Correlates Among Adolescents Who Did or Did Not Undergo Weight Loss Surgery. J Adolesc Health 63:142-150
Lanzieri, Tatiana M; Chung, Winnie; Leung, Jessica et al. (2018) Hearing Trajectory in Children with Congenital Cytomegalovirus Infection. Otolaryngol Head Neck Surg 158:736-744
Bollard, Catherine M; Tripic, Tamara; Cruz, Conrad Russell et al. (2018) Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma. J Clin Oncol 36:1128-1139
Gururangan, Sridharan; Reap, Elizabeth; Schmittling, Robert et al. (2017) Regulatory T cell subsets in patients with medulloblastoma at diagnosis and during standard irradiation and chemotherapy (PBTC N-11). Cancer Immunol Immunother 66:1589-1595
Lanzieri, T M; Leung, J; Caviness, A C et al. (2017) Long-term outcomes of children with symptomatic congenital cytomegalovirus disease. J Perinatol 37:875-880
El-Hattab, Ayman W; Zarante, Ana Maria; Almannai, Mohammed et al. (2017) Therapies for mitochondrial diseases and current clinical trials. Mol Genet Metab 122:1-9
Jin, Haoxing Douglas; Demmler-Harrison, Gail J; Coats, David K et al. (2017) Long-term Visual and Ocular Sequelae in Patients With Congenital Cytomegalovirus Infection. Pediatr Infect Dis J 36:877-882
Oh, Sam S; Du, Randal; Zeiger, Andrew M et al. (2017) Breastfeeding associated with higher lung function in African American youths with asthma. J Asthma 54:856-865

Showing the most recent 10 out of 459 publications