This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Children with growth hormone deficiency (GHD) have increased insulin sensitivity and may present with hypoglycemia during infancy. Treatment with recombinant human growth hormone (rhGH) reduces the risk for hypoglycemia and decreases insulin sensitivity. We hypothesize, that GHD causes a decrease in the fraction of glucose derived form gluconeogenesis and conversely glycogenolysis and insulin sensitivity will be increased, when GHD children are compared to healthy controls. We anticipate that total glucose production will be unaffected by rhGH therapy. Therefore, the GDH subjects treated with rhGH for 8 weeks will have an increase in the fraction of glucose derived form gluconeogenesis and a decrease in that form glycogenolysis and decreased insulin sensitivity. To test this hypothesis, 10 healthy and 10 GHD children will be studied using the stable isotope [U-13C] glucose and Mass Isotopes Distribution Analysis (MIDA). We will be specifically measuring the rate of glucose production, gluconeogenesis, glycogenolysis, insulin sensitivity and glucagon response after an overnight fast. In addition, we will measure changes in protein oxidation, proteolysis and fat metabolism using the stable isotopes [15N2] urea, [1-13C] leucine and concentrations of free fatty acids and b-hydroxybutyrate. The GHD group will be studied at the time of diagnosis and after 8 weeks of rhGH. H1- The fraction of glucose derived from gluconeogenesis is decreased and that from glycogenolysis is increased in the post-absorptive state in untreated GHD children when compared to healthy children. H2- Treatment with rhGH will not change the overall glucose turnover but will normalize the abnormal partitioning of gluconeogenesis and glycogenolysis in GHD children. H3- GH replacement will reduce urea production and increase estimates of protein synthesis, thus optimizing the availability of amino acids for growth. H4- Untreated children with GHD after an overnight fast will have an increased glucagon challenge response that will decrease after 8 weeks of treatment with rhGH. In healthy and newly diagnosed GHD children we will: 1. Measure the Glucose Production Rate (GPR) 2. Determine the fraction of glucose derived from gluconeogenesis and glycogenolysis 3. Estimate insulin sensitivity 4. Measure proteolysis and protein oxidation 5. Determine glucagon challenge response after an overnight fast. The above-mentioned parameters will be re-evaluated in the children with GHD after 8 weeks of rhGH therapy.
Showing the most recent 10 out of 459 publications