The Recruitment and Diagnosis Core will identify and provide an adequate number of subjects for investigation of the phenomenological and biological correlates of mild Alzheimer's disease (AD). The core will identify patients for the Neuropsychology, Acute Phase Reactants, Family History, Neurochemistry,and Neuropathology Project, the Core will identify cohorts who are nondemented, with mild AD, and with more advanced AD> The Core will also recruited patients with different ages of onset of AD in order to permit study of the familial aggregation and biological correlates of probands with earlier and later ages of onset of the disease. The Core's serial assessments will ensure appropriate group assignment and continued eligibility for all subjects. The Core will also obtain consent to autopsy in order to provide cases for the Neurochemistry and Neuropathology projects. Subjects will be assessed and followed at the Mount Sinai Medica Center, Elmhurst Hospital, the Bronx Veterans Hospital, and the Jewish and Home and Hospital for the Aged. A centralized core facility for patients recruitment and reliable assessment is necessary for efficient and appropriate subject selection and follow up.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
2P01AG002219-14
Application #
3745608
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
14
Fiscal Year
1994
Total Cost
Indirect Cost
Name
Mount Sinai School of Medicine
Department
Type
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10029
Khan, Atlas; Liu, Qian; Wang, Kai (2018) iMEGES: integrated mental-disorder GEnome score by deep neural network for prioritizing the susceptibility genes for mental disorders in personal genomes. BMC Bioinformatics 19:501
Giambartolomei, Claudia; Zhenli Liu, Jimmy; Zhang, Wen et al. (2018) A Bayesian framework for multiple trait colocalization from summary association statistics. Bioinformatics 34:2538-2545
Toker, Lilah; Mancarci, Burak Ogan; Tripathy, Shreejoy et al. (2018) Transcriptomic Evidence for Alterations in Astrocytes and Parvalbumin Interneurons in Subjects With Bipolar Disorder and Schizophrenia. Biol Psychiatry 84:787-796
Huckins, L M; Hatzikotoulas, K; Southam, L et al. (2018) Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa. Mol Psychiatry 23:1169-1180
Mitchell, A C; Javidfar, B; Pothula, V et al. (2018) MEF2C transcription factor is associated with the genetic and epigenetic risk architecture of schizophrenia and improves cognition in mice. Mol Psychiatry 23:123-132
Bryois, Julien; Garrett, Melanie E; Song, Lingyun et al. (2018) Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat Commun 9:3121
Fazio, Leonardo; Pergola, Giulio; Papalino, Marco et al. (2018) Transcriptomic context of DRD1 is associated with prefrontal activity and behavior during working memory. Proc Natl Acad Sci U S A 115:5582-5587
Gusev, Alexander; Mancuso, Nicholas; Won, Hyejung et al. (2018) Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet 50:538-548
Girdhar, Kiran; Hoffman, Gabriel E; Jiang, Yan et al. (2018) Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nat Neurosci 21:1126-1136
Hauberg, Mads E; Fullard, John F; Zhu, Lingxue et al. (2018) Differential activity of transcribed enhancers in the prefrontal cortex of 537 cases with schizophrenia and controls. Mol Psychiatry :

Showing the most recent 10 out of 306 publications