The overall goal of this project is to elucidate mechanobiological mechanisms and consequences of functional deterioration of articular cartilage, leading to partial-thickness erosions in the human knee in aging and osteoarthritis. Biomechanical abnormalities occur in the superficial zone of articular cartilage during normal aging, and this is associated with an increased incidence of osteoarthritis. The overall hypothesis is that the superficial zone of normal human knee articular cartilage undergoes aging-related mechanobiolgoical decompensation due to both cell and matrix dysfunction, with a resultant compromise in both cartilage lubrication and load-bearing properties. To address this hypothesis, we propose to test the following aims: 1) Analyze human and mouse knees for spatial signatures of biomechanical dysfunction or failure of the articular cartilage, and the relationship of such variation to putative determinants, matrix composition and structure and also cell organization and phenotype;2) Determine if in vitro dynamic loading of cartilage explants in compression and shear cause cell responses and matrix remodeling in the superficial zone that lead to aging-related compromise of cartilage lubrication and load-bearing functions.

Public Health Relevance

Completion of the proposed studies will help elucidate the mechanobiological cascade contributing to the age- and osteoarthritis-related deterioration of articular cartilage. Such an understanding may facilitate the development of new interventions to forestell the incidence of osteoarthritis.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
2P01AG007996-19A1
Application #
8265783
Study Section
Special Emphasis Panel (ZAG1-ZIJ-9 (04))
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
19
Fiscal Year
2012
Total Cost
$297,249
Indirect Cost
$22,374
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Alvarez-Garcia, Oscar; Matsuzaki, Tokio; Olmer, Merissa et al. (2018) FOXO are required for intervertebral disk homeostasis during aging and their deficiency promotes disk degeneration. Aging Cell 17:e12800
Miyaki, Shigeru; Lotz, Martin K (2018) Extracellular vesicles in cartilage homeostasis and osteoarthritis. Curr Opin Rheumatol 30:129-135
Kalyanaraman, Hema; Schwaerzer, Gerburg; Ramdani, Ghania et al. (2018) Protein Kinase G Activation Reverses Oxidative Stress and Restores Osteoblast Function and Bone Formation in Male Mice With Type 1 Diabetes. Diabetes 67:607-623
Lee, Kwang Il; Olmer, Merissa; Baek, Jihye et al. (2018) Platelet-derived growth factor-coated decellularized meniscus scaffold for integrative healing of meniscus tears. Acta Biomater 76:126-134
Su, Alvin W; Chen, Yunchan; Wailes, Dustin H et al. (2018) Impact insertion of osteochondral grafts: Interference fit and central graft reduction affect biomechanics and cartilage damage. J Orthop Res 36:377-386
Chen, Liang-Yu; Lotz, Martin; Terkeltaub, Robert et al. (2018) Modulation of matrix metabolism by ATP-citrate lyase in articular chondrocytes. J Biol Chem 293:12259-12270
Matsuzaki, Tokio; Alvarez-Garcia, Oscar; Mokuda, Sho et al. (2018) FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci Transl Med 10:
Su, Alvin W; Chen, Yunchan; Dong, Yao et al. (2018) Biomechanics of osteochondral impact with cushioning and graft Insertion: Cartilage damage is correlated with delivered energy. J Biomech 73:127-136
Abhishek, Abhishek; Neogi, Tuhina; Choi, Hyon et al. (2018) Review: Unmet Needs and the Path Forward in Joint Disease Associated With Calcium Pyrophosphate Crystal Deposition. Arthritis Rheumatol 70:1182-1191
Fisch, K M; Gamini, R; Alvarez-Garcia, O et al. (2018) Identification of transcription factors responsible for dysregulated networks in human osteoarthritis cartilage by global gene expression analysis. Osteoarthritis Cartilage 26:1531-1538

Showing the most recent 10 out of 321 publications