The central theme of this program is to study aging of the human knee joint and its relationship to osteoarthritis (OA). The Administrative Core will focus efforts of the cores and projects on this theme, advance hypotheses and research directions and ascertain scientific progress. The core will provide administrative support for the most efficient utilization of resources. The core will maintain access to different sources of knee joints and cartilage and monitor sample processing by the cores and analysis by the projects. Core A also serves as the central unit for data management and maintains the database for all knee specimens that are studied in the program.
The Specific Aims of the Administrative Core are:
Aim 1. Monitor scientific progress in the individual projects.
Aim 2. Promote interactions among the investigators in the program.
Aim 3. Support young scientists and development of new projects.
Aim 4. Provide access to knees and cartilage samples.
Aim 5. Maintain central database.
Aim 6. Perform statistical analysis.
Aim 7. Coordinate all fiscal activities of the program.
Aim 8. Ascertain responsible conduct of research.
Aim 9. Enforce safety measures for work with hazardous materials.
Aim 1 0. Distribute tissues and tissue extracts to outside investigators.

Public Health Relevance

Osteoarthritis represents the most prevalent joint disease for which disease-modifying therapies are not available. Aging is the major risk factor for the development of OA, and this project is focused on the discovery of biomarkers and therapeutic targets. A multidisciplinary appoach is used to study aging and OA related changes in the human knee. This core serves the function to thematically focus and direct the program.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG007996-20
Application #
8459429
Study Section
Special Emphasis Panel (ZAG1-ZIJ-9)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
20
Fiscal Year
2013
Total Cost
$227,251
Indirect Cost
$107,330
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Jin, Yunyun; Cong, Qian; Gvozdenovic-Jeremic, Jelena et al. (2018) Enpp1 inhibits ectopic joint calcification and maintains articular chondrocytes by repressing hedgehog signaling. Development 145:
Grogan, Shawn P; Duffy, Stuart F; Pauli, Chantal et al. (2018) Gene expression profiles of the meniscus avascular phenotype: A guide for meniscus tissue engineering. J Orthop Res 36:1947-1958
Baek, Jihye; Sovani, Sujata; Choi, Wonchul et al. (2018) Meniscal Tissue Engineering Using Aligned Collagen Fibrous Scaffolds: Comparison of Different Human Cell Sources. Tissue Eng Part A 24:81-93
Chen, L-Y; Wang, Y; Terkeltaub, R et al. (2018) Activation of AMPK-SIRT3 signaling is chondroprotective by preserving mitochondrial DNA integrity and function. Osteoarthritis Cartilage 26:1539-1550
Shadyab, A H; Terkeltaub, R; Kooperberg, C et al. (2018) Prospective associations of C-reactive protein (CRP) levels and CRP genetic risk scores with risk of total knee and hip replacement for osteoarthritis in a diverse cohort. Osteoarthritis Cartilage 26:1038-1044
Ishitobi, Hiroyuki; Sanada, Yohei; Kato, Yoshio et al. (2018) Carnosic acid attenuates cartilage degeneration through induction of heme oxygenase-1 in human articular chondrocytes. Eur J Pharmacol 830:1-8
Alvarez-Garcia, Oscar; Matsuzaki, Tokio; Olmer, Merissa et al. (2018) FOXO are required for intervertebral disk homeostasis during aging and their deficiency promotes disk degeneration. Aging Cell 17:e12800
Miyaki, Shigeru; Lotz, Martin K (2018) Extracellular vesicles in cartilage homeostasis and osteoarthritis. Curr Opin Rheumatol 30:129-135
Kalyanaraman, Hema; Schwaerzer, Gerburg; Ramdani, Ghania et al. (2018) Protein Kinase G Activation Reverses Oxidative Stress and Restores Osteoblast Function and Bone Formation in Male Mice With Type 1 Diabetes. Diabetes 67:607-623
Lee, Kwang Il; Olmer, Merissa; Baek, Jihye et al. (2018) Platelet-derived growth factor-coated decellularized meniscus scaffold for integrative healing of meniscus tears. Acta Biomater 76:126-134

Showing the most recent 10 out of 321 publications