Hearing loss in the elderly, presbycusis, is the number one communicative disorder of the elderly. Classically, loss of sensory cells (hair cells) in the basal (high pitch) portion of the cochlear (inner ear of the peripheral auditory system) has contributed to presbycusis. Other more recent evidence points to age-related changes in the brain itself (central auditory system) as a cause of presbycusis. These two factors result in the two main perceptual difficulties: a high-pitch loss in sensitivity and a difficulty of understanding speech in background noise. During the previous funding period, significant age-related changes were observed in animals with age-related auditory temporal pathways, electron microscopy of midbrain synapses, cochlear inner and outer hair cell degeneration, and others. In the upcoming grant period, techniques of cellular neuroimaging will be applied in slice preparations of young and old animals to determine calcium regulatory changes with age in brain regions we previously demonstrated had age-related temporal processing deficits, as well as determining if manipulation of intracellular calcium concentration levels and stores will affect the processing of auditory temporal information. Close ties will exist with the Animal Behavior Project (acoustic startle response- Project 2), the Single-unit Physiology Project (midbrain, cochlear nucleus- Project 3), and the Human and Animal Evoked Potential Project (animal Wave I and IV- Project 5). These neurophysiological and behavioral projects will evaluate any age-related improvements in temporal processing in old CBA mice that may occur due to loading the inferior colliculus (IC) of young, adult mice with increased calcium regulators in the present project. In addition, HRP immunohistochemistry will continue to be performed in conjunction with the single-unit neurophysiological mapping experiments of Project 3. Specifically, inputs to the ventrolateral division of the central nucleus of IC will be compared to the decline inputs to dorsomedial IC that we have already discovered with age. Descending inputs to the central cochlear nucleus from higher centers of the brain will be examined to see if any age-related changes in connectivity occur. The results of these studies will be utilized to prepared for medical/surgical/technological interventions to increase the quality of life in our elderly population, especially in regard to sensory perception and brain functioning.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
3P01AG009524-09S2
Application #
6502858
Study Section
Project Start
2001-09-30
Project End
2002-04-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
9
Fiscal Year
2001
Total Cost
$230,705
Indirect Cost
Name
Rochester Institute of Technology
Department
Type
DUNS #
City
Rochester
State
NY
Country
United States
Zip Code
14623
Hoover, Eric C; Eddins, Ann C; Eddins, David A (2018) Distribution of spectral modulation transfer functions in a young, normal-hearing population. J Acoust Soc Am 143:306
Eddins, Ann Clock; Eddins, David A (2018) Cortical Correlates of Binaural Temporal Processing Deficits in Older Adults. Ear Hear 39:594-604
Ozmeral, Erol J; Eddins, Ann C; Eddins, David A (2018) How Do Age and Hearing Loss Impact Spectral Envelope Perception? J Speech Lang Hear Res 61:2376-2385
Walton, Joseph P; Dziorny, Adam C; Vasilyeva, Olga N et al. (2018) Loss of the Cochlear Amplifier Prestin Reduces Temporal Processing Efficacy in the Central Auditory System. Front Cell Neurosci 12:291
Eddins, Ann Clock; Ozmeral, Erol J; Eddins, David A (2018) How aging impacts the encoding of binaural cues and the perception of auditory space. Hear Res 369:79-89
Scott, L L; Brecht, E J; Philpo, A et al. (2017) A novel BK channel-targeted peptide suppresses sound evoked activity in the mouse inferior colliculus. Sci Rep 7:42433
Bazard, Parveen; Frisina, Robert D; Walton, Joseph P et al. (2017) Nanoparticle-based Plasmonic Transduction for Modulation of Electrically Excitable Cells. Sci Rep 7:7803
Watson, Nathan; Ding, Bo; Zhu, Xiaoxia et al. (2017) Chronic inflammation - inflammaging - in the ageing cochlea: A novel target for future presbycusis therapy. Ageing Res Rev 40:142-148
Brecht, Elliott J; Barsz, Kathy; Gross, Benjamin et al. (2017) Increasing GABA reverses age-related alterations in excitatory receptive fields and intensity coding of auditory midbrain neurons in aged mice. Neurobiol Aging 56:87-99
Halonen, Joshua; Hinton, Ashley S; Frisina, Robert D et al. (2016) Long-term treatment with aldosterone slows the progression of age-related hearing loss. Hear Res 336:63-71

Showing the most recent 10 out of 123 publications