The Animal Resource Core (Core B) is an essential component of the research program in its study of neurocognitive aging to provide young and aged rats to each of the Projects. A major objective of the overall research program is to elucidate the basis of neurocognitive aging in behaviorally characterized healthy aged rats. The overall research program further exploits the feature of individual differences in neurocognitive aging, a phenomenon that is well-documented in humans and captured in the animal model used in this research. The many years of work with this outbred model of male Long Evans have established that a subpopulation at older ages exhibit impaired performance while other rats in the aged cohort maintain preserved performance on a par with young adults. These well-characterized individual differences have been used successfully to examine neurobiological variations in the medial temporal lobe that are closely coupled to cognitive outcomes. The Animal Resource (Core B) maintains a colony of pathogen-free male Long-Evans rats, which are additionally screened for disability and physiological impairment. All rats in the Animal Resource undergo assessment of cognitive function in a standardized protocol for ?place? and ?cue? learning in a water maze apparatus. The Animal Resource together with the Data Management (Core C) provides routine analysis of these results to characterize presence/severity of impairment. Additional behavioral assessments (e.g. object recognition) are provided for specific project experiments. The Animal Resource compiles records on animal health, inventory, and analysis of the behavioral assessments, all in an archived form maintained by Core C (Data Management and Statistics). Animals from the resource are then made available to the Projects for further studies, with assignments under the supervision of the Administrative Core (Core A). In many instances live animals are transferred from the Resource to projects for further in vivo analysis (i.e., electrophysiological recording, additional behavioral assessment) or to provide fresh tissue as needed for in vitro studies. In addition to providing rodent material for current projects, Core B also banks tissue specimens (dissected brain regions, peripheral organ tissues, blood samples) to be used at a later date by project investigators or outside scientists, This resource sharing activity is managed and coordinated by the Administrative Core (Core A).

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG009973-25
Application #
9720781
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
2021-05-31
Budget Start
2019-06-01
Budget End
2020-05-31
Support Year
25
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Haberman, Rebecca P; Koh, Ming Teng; Gallagher, Michela (2017) Heightened cortical excitability in aged rodents with memory impairment. Neurobiol Aging 54:144-151
Haberman, Rebecca P; Branch, Audrey; Gallagher, Michela (2017) Targeting Neural Hyperactivity as a Treatment to Stem Progression of Late-Onset Alzheimer's Disease. Neurotherapeutics 14:662-676
Posada-Duque, Rafael Andrés; Ramirez, Omar; Härtel, Steffen et al. (2017) CDK5 downregulation enhances synaptic plasticity. Cell Mol Life Sci 74:153-172
Gu, Yu; Tran, Trinh; Murase, Sachiko et al. (2016) Neuregulin-Dependent Regulation of Fast-Spiking Interneuron Excitability Controls the Timing of the Critical Period. J Neurosci 36:10285-10295
Wang, Hui; Ardiles, Alvaro O; Yang, Sunggu et al. (2016) Metabotropic Glutamate Receptors Induce a Form of LTP Controlled by Translation and Arc Signaling in the Hippocampus. J Neurosci 36:1723-9
Robitsek, Jonathan; Ratner, Marcia H; Stewart, Tara et al. (2015) Combined administration of levetiracetam and valproic acid attenuates age-related hyperactivity of CA3 place cells, reduces place field area, and increases spatial information content in aged rat hippocampus. Hippocampus 25:1541-55
Tomás Pereira, Inês; Gallagher, Michela; Rapp, Peter R (2015) Head west or left, east or right: interactions between memory systems in neurocognitive aging. Neurobiol Aging 36:3067-3078
Gallagher, Michela; Burwell, Rebecca; Burchinal, Margaret (2015) Severity of spatial learning impairment in aging: Development of a learning index for performance in the Morris water maze. Behav Neurosci 129:540-8
Mayse, Jeffrey D; Nelson, Geoffrey M; Avila, Irene et al. (2015) Basal forebrain neuronal inhibition enables rapid behavioral stopping. Nat Neurosci 18:1501-8
Castellano, James F; Fletcher, Bonnie R; Patzke, Holger et al. (2014) Reassessing the effects of histone deacetylase inhibitors on hippocampal memory and cognitive aging. Hippocampus 24:1006-16

Showing the most recent 10 out of 165 publications