The function of the Animal Core is to produce and maintain all of the animals required for the scientific projects for this and several other program project grants. The specific services of the Animal Core personnel include: 1) Production of transgenic and knockout mice; 2) Production of large volumes of scrapie-infected hamster brains for purification; 3) Performing experimental inoculations, neurologic scoring of animals, data collection, and tissue collections; 4) Providing transportation of animals and tissue between the laboratory and the animal facility; 5) Production of antibodies in mice and rabbits for experimental use; and 6) Providing all animal care and veterinary care. The Animal Core operates in two purpose-built facilities in the Hunters Point area of San Francisco, approximately 12 miles from the main UCSF campus. Its' activities are directed by Dr. Prusiner and Dr. Marilyn Torchia, a laboratory animal veterinarian. Building 830B is a new nine room transgenic mouse breeding facility which just recently opened for our large breeding colony. Building 830 houses all the experimental animals in 19 rooms, under BSL 1 and 2 bio-containment.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG010770-06
Application #
6267587
Study Section
Project Start
1998-04-01
Project End
1999-03-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
6
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
O'Brien, Connor J; Droege, Daniel G; Jiu, Alexander Y et al. (2018) Photoredox Cyanomethylation of Indoles: Catalyst Modification and Mechanism. J Org Chem 83:8926-8935
Condello, Carlo; Lemmin, Thomas; Stöhr, Jan et al. (2018) Structural heterogeneity and intersubject variability of A? in familial and sporadic Alzheimer's disease. Proc Natl Acad Sci U S A 115:E782-E791
Woerman, Amanda L; Kazmi, Sabeen A; Patel, Smita et al. (2018) MSA prions exhibit remarkable stability and resistance to inactivation. Acta Neuropathol 135:49-63
Lim, Kwang Hun; Dasari, Anvesh K R; Hung, Ivan et al. (2016) Structural Changes Associated with Transthyretin Misfolding and Amyloid Formation Revealed by Solution and Solid-State NMR. Biochemistry 55:1941-4
Elkins, Matthew R; Wang, Tuo; Nick, Mimi et al. (2016) Structural Polymorphism of Alzheimer's ?-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study. J Am Chem Soc 138:9840-52
Watts, Joel C; Giles, Kurt; Saltzberg, Daniel J et al. (2016) Guinea Pig Prion Protein Supports Rapid Propagation of Bovine Spongiform Encephalopathy and Variant Creutzfeldt-Jakob Disease Prions. J Virol 90:9558-9569
Dunn, Joshua G; Weissman, Jonathan S (2016) Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data. BMC Genomics 17:958
Giles, Kurt; Berry, David B; Condello, Carlo et al. (2016) Optimization of Aryl Amides that Extend Survival in Prion-Infected Mice. J Pharmacol Exp Ther 358:537-47
Patzke, Christopher; Acuna, Claudio; Giam, Louise R et al. (2016) Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med 213:499-515
Ahlenius, Henrik; Chanda, Soham; Webb, Ashley E et al. (2016) FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice. Proc Natl Acad Sci U S A 113:8514-9

Showing the most recent 10 out of 179 publications