Aging is associated with progressive declines in a variety of biological functions, often reflecting local responses to system-wide physiological changes. The overall goal of this Program Project is to investigate the effects of the age-related decline in growth hormone and resultant decline in insulin-like growth factor 1 (IGF-1) on the brain. IGF-1, like several other growth factors, influences the growth and differentiation of both neurons and the microvasculature that supports the tremendous metabolic demand within neural tissue. The large decrease in IGF-1 that occurs with senescence is likely to result in significant changes in neuronal form and function within the brain. The temporal correlation of the decrease in IGF-1 levels with a general decline in cognitive abilities, and the recent observation that administration of e exogenous IGF-1 to aged animals increases cognitive abilities, makes the factor an important candidate for further study. This project will test the hypothesis that IGF-1 influences the development and maintenance of neuronal architecture and metabolism such that the age-related decrease in IGF-1 levels significantly affects neurons structure and activity. The experiments are predicated on the idea that the cognitive deficits associated with aging must result, at least in part, from an age-associated change in neuronal architecture and/or a loss in ability to regulate and maintain neuronal connectivity and signaling. To examine the specific relationship between IGF-1 and neuronal form and function we will quantify age-related changes in the extent and complexity of dendritic processes of cortical neurons, as well as changes in metabolism and vascularization, within well-defined regions of the cerebral cortex. We will determine whether those changes are the result of the age-related decrease in IGF-1 levels by testing whether they are reversed by exogenous IGF-1 delivered to aged animals, prevented by maintaining IGF-1 levels in aging animals, and elicited by an earlier than normal decrease in IGF-1 in young adult animals. Finally, we will examine specific mechanisms by which IGF-1 may regulated neuronal structure and function by measuring the effects of IGF-1 on developing dendrites, examining the interaction of IGF-1 with other neurotropic factors that influence neuronal growth and differentiation and quantifying the effects of IGF-1 signaling on calcium homeostasis, a key regulator of the neuronal development and function. These studies will provide a greater understanding of the effects of age on the brain and of the role of one critical factor in regulating those changes.
Showing the most recent 10 out of 131 publications