The primary goal of this Program Project is to investigate interactions between the aging brain and female reproductive senescence. Animal studies have demonstrated clearly that changes in circulating estrogen levels affect cellular and molecular attributes of certain neural circuits and related cognitive functions. However, the link between such observations and the human data on peri-and post-menopausal memory impairment, beneficial neurobehavioral effects of estrogen replacement therapy (ERT) or combined hormone replacement therapy (HRT) and protection against Alzheimer's disease are far from clear. Recent studies from the Women's Health Initiative on potential negative effects of a commonly used combined hormone replacement (HR) regimen have brought these issues to the forefront, and reinforced the need for additional scientific data on which to base therapies that are more physiological and beneficial to women. The Program Project mechanism is ideally suited for a full spectrum analysis of the key issues;from signaling mechanisms of estrogen in the brain to an in-depth structural and functional assessment of the effects of estrogen on the circuits regulating reproductive function (hypothalamus), to the effects of estrogen and aging on cognition and related cortical circuits. Projects 1, 2, and 3 will converge on the rodent model for detailed mechanistic and ultrastructural analyses of estrogen-induced plasticity, interactions with progesterone, and alterations in estrogen-induced plasticity due to aging. Core A and Projects 2, 3, 5, and 6 will converge on the nonhuman primate model (NHP) to study similar systems in NHPs treated with one of several clinically relevant HR regimens involving different schedules of estrogen and progesterone replacement. The aged NHPs will have extensive neuropsychological assessment aimed at determining age, estrogen, and progesterone effects on medial temporal lobe and prefrontal functions. We will investigate the neurobiological effects of multiple HR regimens in young and aged NHPs to reveal key synaptic and cellular reflections of estrogen-induced plasticity as well as effects on neurogenesis, and potential modifications induced by progesterone. In the aged animals, we will illuminate the underlying neurobiological events responsible for cognitive enhancement. Such analyses will reveal the HR regimen that most successfully promotes neurobiological and cognitive health in aged monkeys, laying the groundwork for more informed approaches to HRT in humans to promote successful brain aging.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG016765-10
Application #
7572850
Study Section
Special Emphasis Panel (ZAG1-ZIJ-6 (O1))
Program Officer
Wise, Bradley C
Project Start
1999-04-21
Project End
2011-02-28
Budget Start
2009-04-01
Budget End
2011-02-28
Support Year
10
Fiscal Year
2009
Total Cost
$1,496,536
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Neurosciences
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Baxter, Mark G; Santistevan, Anthony C; Bliss-Moreau, Eliza et al. (2018) Timing of cyclic estradiol treatment differentially affects cognition in aged female rhesus monkeys. Behav Neurosci 132:213-223
Crimins, Johanna L; Puri, Rishi; Calakos, Katina C et al. (2018) Synaptic distributions of pS214-tau in rhesus monkey prefrontal cortex are associated with spine density, but not with cognitive decline. J Comp Neurol :
Milham, Michael P; Ai, Lei; Koo, Bonhwang et al. (2018) An Open Resource for Non-human Primate Imaging. Neuron 100:61-74.e2
Motley, Sarah E; Grossman, Yael S; Janssen, William G M et al. (2018) Selective Loss of Thin Spines in Area 7a of the Primate Intraparietal Sulcus Predicts Age-Related Working Memory Impairment. J Neurosci 38:10467-10478
Bliss-Moreau, Eliza; Baxter, Mark G (2018) Estradiol treatment in a nonhuman primate model of menopause preserves affective reactivity. Behav Neurosci 132:224-229
Garcia, Alexandra N; Depena, Christina; Bezner, Kelsey et al. (2018) The timing and duration of estradiol treatment in a rat model of the perimenopause: Influences on social behavior and the neuromolecular phenotype. Horm Behav 97:75-84
Beckman, Danielle; Baxter, Mark G; Morrison, John H (2018) Future directions in animal models of Alzheimer's disease. J Neurosci Res 96:1829-1830
Nutsch, Victoria L; Bell, Margaret R; Will, Ryan G et al. (2017) Aging and estradiol effects on gene expression in the medial preoptic area, bed nucleus of the stria terminalis, and posterodorsal medial amygdala of male rats. Mol Cell Endocrinol 442:153-164
Garcia, Alexandra N; Bezner, Kelsey; Depena, Christina et al. (2017) The effects of long-term estradiol treatment on social behavior and gene expression in adult female rats. Horm Behav 87:145-154
Nutsch, Victoria L; Will, Ryan G; Tobiansky, Daniel J et al. (2017) Age-related changes in sexual function and steroid-hormone receptors in the medial preoptic area of male rats. Horm Behav 96:4-12

Showing the most recent 10 out of 132 publications