Scientific progress in the ability to characterize the expression characteristics of organs, tissues, cell populations, and the rapidly approaching requirement to monitor single cells have moved traditional scientific methods of data capture into the computer age. Genome-based data, including microarray techniques have only emphasized the requirement for more complete analysis of experimental data. Understanding of the biology at the level of the organism will be facilitated when methods of experimental data capture allow its comprehensive review. To this end, this Program Project has undertaken the goal of creating methods of simplified and accurate data capture at the level of genetic manipulation, animal management, gene expression, protein levels, and the complex endpoint of mouse pathology. Creating a high quality source of animal data from genotype to pathology supports the Program Project's stated long-term goal of elucidating the role of genome stability mechanisms in the process of biological aging by studying mice with specific gene mutations for alterations in various aging-related parameters. We propose the continuation of this core as the Array and Informatics Core to provide services related to the capture and storage of data related to genotype, lifespan data, mRNA expression levels, and end-of-life pathology.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
2P01AG017242-06
Application #
6783970
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5 (J3))
Project Start
2004-04-01
Project End
2009-03-31
Budget Start
2004-04-01
Budget End
2005-03-31
Support Year
6
Fiscal Year
2004
Total Cost
$246,497
Indirect Cost
Name
University of Texas Health Science Center San Antonio
Department
Type
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Lau, Cia-Hin; Suh, Yousin (2018) In vivo epigenome editing and transcriptional modulation using CRISPR technology. Transgenic Res 27:489-509
Wiley, Christopher D; Schaum, Nicholas; Alimirah, Fatouma et al. (2018) Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype. Sci Rep 8:2410
Quispe-Tintaya, Wilber; Lee, Moonsook; Dong, Xiao et al. (2018) Bleomycin-induced genome structural variations in normal, non-tumor cells. Sci Rep 8:16523
Hébert, Jean M; Vijg, Jan (2018) Cell Replacement to Reverse Brain Aging: Challenges, Pitfalls, and Opportunities. Trends Neurosci 41:267-279
Perrott, Kevin M; Wiley, Christopher D; Desprez, Pierre-Yves et al. (2017) Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. Geroscience 39:161-173
Jung, Hwa Jin; Lee, Kwang-Pyo; Milholland, Brandon et al. (2017) Comprehensive miRNA Profiling of Skeletal Muscle and Serum in Induced and Normal Mouse Muscle Atrophy During Aging. J Gerontol A Biol Sci Med Sci 72:1483-1491
Jeon, Ok Hee; Kim, Chaekyu; Laberge, Remi-Martin et al. (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23:775-781
Andriani, Grasiella A; Vijg, Jan; Montagna, Cristina (2017) Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain. Mech Ageing Dev 161:19-36
Vijg, Jan; Dong, Xiao; Milholland, Brandon et al. (2017) Genome instability: a conserved mechanism of ageing? Essays Biochem 61:305-315
Lau, Cia-Hin; Suh, Yousin (2017) Genome and Epigenome Editing in Mechanistic Studies of Human Aging and Aging-Related Disease. Gerontology 63:103-117

Showing the most recent 10 out of 253 publications