Frontotemporal lobar degeneration (FTLD) is the second most common cause of dementia after Alzheimer's disease (AD) in patients <65 years of age. Tau and TDP-43 pathology variants of FTLD (FTLD-Tau and FTLD-TDP, respectively) account for -90 of FTLD cases, but TDP-43 pathology occurs in >50% of patients with AD, Parkinson's disease (PD), dementia with Lewy bodies (DLB), and Guam amyotrophic lateral sclerosis (ALS)/Parkinson Dementia Complex (ALS/PDC). Despite the fact that this neuropathology overlap is well known, it is unclear how comorbid Ap, tau and alpha-synuclein pathology modify TDP-43 mediated neurodegeneration in patients with frontotemporal dementia (FTD). Conversely, it is unknown how TDP-43 modifies Ap, tau and alpha-synuclein pathologies, but TDP-43 pathology is known to independently contribute to behavioral impairments in AD. Since these issues are tractable to investigate experimentally in transgenic (Tg) mouse models of TDP-43, tau, Ap and alpha-synuclein pathology. Project 4 tests the hypothesis that comorbid tau, Ap and alpha-synuclein pathologies in Tg mice independently modify TDP-43 mediated neurodegeneration and wee versa. This will be done by studying TDP-43 Tg mice which recapitulate the hallmark features of FTLD-TDP that we cross with our previously characterized mutant P301S tau Tg mice which show tau mediated neurodegeneration, behavioral impairments and premature death, Tg2576 Tg mice that model AD-like Ap pathology and our extensively studied M83 alpha-synuclien Tg mice that develop Lewy body pathology, motor impairments and lethal neurodegeneration. Implementing these Aims will elucidate how TDP-43 mediated neurodegenerative disease is modified by comorbid tau, Ap and alpha-synuclien pathologies and vice versa. These studies are highly significant because they will clarify mechanisms of TDP-43 proteinopathy and they have translational potential to improve both the diagnosis and the treatment of patients with TDP-43 proteinopathy.

Public Health Relevance

Project 4 tests the hypothesis that frontotemporal dementia (FTD) patients with co-incident Alzheimer's disease (AD) pathology (tau tangles, Ap plaques), or Parkinson's disease (PD) pathology (alpha-synuclein Lewy bodies) may have a different disease course and responses to therapies than those without these comorbid pathologies and vice versa. Although tau, Ap and alphasynuclein lesions often co-occur with TDP-43 pathologies in the same patient, these issues are difficult to address in patients but they are readily addressed in studies of transgenic (Tg) mouse models of TDP-43 mediated neurodegeneration that are/are not crossed with Tg mouse models of AD or PD pathologies. Thus, the relevance of Project 4 to human health is that it will elucidate how TDP-43 mediated neurodegeneration is modified by comorbid tau, Ap and alpha-synuclien pathologies and vice versa. These studies are highly significant because they will clarify mechanisms of TDP-43 proteinopathy and have translational potential to improve the diagnosis and treatment of patients with FTD, AD, PD and related disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
2P01AG017586-11
Application #
8048420
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (01))
Project Start
Project End
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
11
Fiscal Year
2011
Total Cost
$301,758
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Ferraro, Pilar M; Jester, Charles; Olm, Christopher A et al. (2018) Perfusion alterations converge with patterns of pathological spread in transactive response DNA-binding protein 43 proteinopathies. Neurobiol Aging 68:85-92
Irwin, David J; Xie, Sharon X; Coughlin, David et al. (2018) CSF tau and ?-amyloid predict cerebral synucleinopathy in autopsied Lewy body disorders. Neurology 90:e1038-e1046
Spiller, Krista J; Restrepo, Clark R; Khan, Tahiyana et al. (2018) Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat Neurosci 21:329-340
Massimo, Lauren; Xie, Sharon X; Rennert, Lior et al. (2018) Occupational attainment influences longitudinal decline in behavioral variant frontotemporal degeneration. Brain Imaging Behav :
Irwin, David J; McMillan, Corey T; Xie, Sharon X et al. (2018) Asymmetry of post-mortem neuropathology in behavioural-variant frontotemporal dementia. Brain 141:288-301
Rey, Nolwen L; George, Sonia; Steiner, Jennifer A et al. (2018) Spread of aggregates after olfactory bulb injection of ?-synuclein fibrils is associated with early neuronal loss and is reduced long term. Acta Neuropathol 135:65-83
Phillips, Jeffrey S; Da Re, Fulvio; Dratch, Laynie et al. (2018) Neocortical origin and progression of gray matter atrophy in nonamnestic Alzheimer's disease. Neurobiol Aging 63:75-87
Lewczuk, Piotr; Riederer, Peter; O'Bryant, Sid E et al. (2018) Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry 19:244-328
Kassubek, Jan; Müller, Hans-Peter; Del Tredici, Kelly et al. (2018) Longitudinal Diffusion Tensor Imaging Resembles Patterns of Pathology Progression in Behavioral Variant Frontotemporal Dementia (bvFTD). Front Aging Neurosci 10:47
Cousins, Katheryn A Q; Ash, Sharon; Grossman, Murray (2018) Production of verbs related to body movement in amyotrophic lateral sclerosis (ALS) and Parkinson's Disease (PD). Cortex 100:127-139

Showing the most recent 10 out of 593 publications