Age related osteoporotic fractures are largely due to an increased propensity to fall with aging and a reduction in bone strength. Although skeletal architecture contributes to fracture risk, bone mineral density (BMD) is the most important determinant of bone strength and fracture risk. Between 60 and 80% of the variance in peak bone mineral density of adult Caucasian women has been estimated to be due to heritable factors. Osteoporosis in later life is a function of peak bone mass attained during young adulthood and rate of loss. The goals of this study are to use non- parametric linkage analysis techniques in a large sample of pre- menopausal sister pairs to map, and ultimately clone, genes that play important roles in determining peak BMD. The hypothesis that will be tested are: 1) there are genes that have major effects on attainment of peak bone mineral density; 2) genes with major effects on peak bone mineral density can be cloned using a positional cloning/candidate strategy; 3) the genes that regulate attainment of peak bone mass are the same in African Americans and Caucasians; however, African Americans have a higher frequency of favorable """"""""functional polymorphisms"""""""" leading to higher peak BMD and lower fracture rates.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG018397-03
Application #
6615164
Study Section
Special Emphasis Panel (ZAG1)
Project Start
2002-08-01
Project End
2003-06-30
Budget Start
Budget End
Support Year
3
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Indiana University-Purdue University at Indianapolis
Department
Type
DUNS #
005436803
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Robinson-Cohen, Cassianne; Bartz, Traci M; Lai, Dongbing et al. (2018) Genetic Variants Associated with Circulating Fibroblast Growth Factor 23. J Am Soc Nephrol 29:2583-2592
Zeng, Y; Zhang, L; Zhu, W et al. (2017) Network based subcellular proteomics in monocyte membrane revealed novel candidate genes involved in osteoporosis. Osteoporos Int 28:3033-3042
Koller, Daniel L; Imel, Erik A; Lai, Dongbing et al. (2016) Genome-wide association study of serum iron phenotypes in premenopausal women of European descent. Blood Cells Mol Dis 57:50-3
Pei, Yu-Fang; Tian, Qing; Zhang, Lei et al. (2016) Exploring the Major Sources and Extent of Heterogeneity in a Genome-Wide Association Meta-Analysis. Ann Hum Genet 80:113-22
Pei, Yu-Fang; Hu, Wen-Zhu; Hai, Rong et al. (2016) Genome-wide association meta-analyses identified 1q43 and 2q32.2 for hip Ward's triangle areal bone mineral density. Bone 91:1-10
Niu, Tianhua; Liu, Ning; Yu, Xun et al. (2016) Identification of IDUA and WNT16 Phosphorylation-Related Non-Synonymous Polymorphisms for Bone Mineral Density in Meta-Analyses of Genome-Wide Association Studies. J Bone Miner Res 31:358-68
Liu, Yao-Zhong; Zhou, Yu; Zhang, Lei et al. (2015) Attenuated monocyte apoptosis, a new mechanism for osteoporosis suggested by a transcriptome-wide expression study of monocytes. PLoS One 10:e0116792
Pei, Yu-Fang; Zhang, Lei; Liu, Yongjun et al. (2014) Meta-analysis of genome-wide association data identifies novel susceptibility loci for obesity. Hum Mol Genet 23:820-30
Zhang, Lei; Choi, Hyung Jin; Estrada, Karol et al. (2014) Multistage genome-wide association meta-analyses identified two new loci for bone mineral density. Hum Mol Genet 23:1923-33
Alam, Imranul; Padgett, Leah R; Ichikawa, Shoji et al. (2014) SIBLING family genes and bone mineral density: association and allele-specific expression in humans. Bone 64:166-72

Showing the most recent 10 out of 86 publications