Bone is a living organ that is maintained through continuous formation of new bone by osteoblasts and resorption of exiting bone by osteoclasts. Loss of bone mass at advanced ages causes osteoporosis. Caspase-2 is a protease that is involved in programmed cell death (apoptosis). During the last funding period, we found that caspase-2 is an important regulator of bone mass in aging animals. Our critical observation was that aging-associated bone loss in old (24-26 month) caspase-2 null mice was more severe than that in the same age wild type mice. The objective of this proposal is to further study the role of caspase-2 in aging skeleton. Our hypothesis is that caspase-2 mediates mitochondrial-dependent apoptosis of aging osteoclasts, which is induced by oxidative stress in vivo. Lack of caspase-2 activity results in reduced apoptosis of aging osteoclasts, leading to increased bone resorption. To test this hypothesis, first, we will compare the rate of bone formation and bone resorption in old caspase-2 null and wild type mice to show that caspase-2 affects bone resorption. Next, we will compare the apoptosis rate in aging osteoclasts that have increased/decreased antioxidant capacity to show that oxidative stress is a cause of spontaneous apoptosis of aging osteoclasts. Then, we will compare the apoptosis rate of caspase-2 (-/-)and (+/+) aging osteoclasts to show that caspase-2 plays an important role in the spontaneous apoptosis of aging osteoclasts. Finally, we will compare the apoptosis rate in aging osteoclasts that have both altered antioxidant activity and caspase-2 activity to show that caspase-2 is a mediator of oxidative stress-induced apoptosis. Calmodulin (CaM) dependent kinase II (CaMK II) can phosphorylate procaspase-2 and prevent its activation. NADPH, which provides reducing equivalent for various biochemical reactions to scavenge oxidants, also inhibits the activation of procaspase-2 by enhancing CaMK II function. Based on these findings, we will test the hypothesis that oxidative stress activates caspase-2 in aging osteoclasts through down-regulation of NADPH/CaMK II activity by examining the level of NAPDH and oxidation of CaM and CaMK II. Osteoporosis is a serious disease that affects the elderly. The main strategy and mechanism of action of current anti-osteoporosis therapy is to induce osteoclast apoptosis. Therefore, this study will shed the light on the mechanism of apoptosis in osteoclasts and open new avenues for new anti-osteoporosis therapies.
Showing the most recent 10 out of 120 publications