The purpose of the Electrophysiology Core is to conduct long-term potentiation recording experiments for all projects of this program. Long-term potentiation (LTP), an enhancement of synaptic transmission following high frequency stimulation, is believed to be the cellular basis of learning and memory. The mechanism of LTP has been studied widely in the hippocampal CA1 area, and many studies have demonstrated that efficacy of LTP consistently correlates with assessments of learning and memory/ cognitive function. Thus, the Electrophysiology Core will conduct LTP experiments to provide a functional assessment of cognitive function, and how it may be influenced with conditions and interventions tested in the projects. The Electrophysiology Core has the following Specific Aims: 1): Conduct hippocampal CA1 long-term potentiation recording experiments for projects 1, 2, 3 and 4. The Electrophysiology Core laboratory has established hippocampal CA1 LTP recording in mice, including those up to 24 months of age (Projects, 1, 3 and 4) and rats (Project 2). The Core will conduct all LTP experiments, analyze all data (in conjunction with the biostatistical component of the Administration Core), and provide results to the relevant Project Director. The Electrophysiology Core Director and Core personnel conducting LTP studies will be blinded to the treatment to which individual animals will have been exposed. 2): Provide an organizational structure for Project Directors to ensure a timely and cost-effective completion of required long-term potentiation studies. The Core Director will oversee overall operations of the Electrophysiology Core. As the Core will be conducting studies for four projects on various age groups of animals, the Core Director will work with Project Directors and Director of the Animal Resources and Behavioral Assessment Core (Core B) to coordinate electrophysiology studies with timings of other endpoints for each Project. The experiments to be conducted by the Electrophysiology Core will assist the Projects of this program in their attempt to discover the adverse changes that occur in the brain with aging, neurological diseases such as Alzheimer's Disease, and injuries such as stroke. Understanding these adverse changes should help us to discover new therapeutics and interventions to treat these conditions.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Texas
Fort Worth
United States
Zip Code
Izurieta Munoz, Haydee; Gonzales, Eric B; Sumien, Nathalie (2018) Effects of creatine supplementation on nociception in young male and female mice. Pharmacol Rep 70:316-321
Mock, J Thomas; Knight, Sherilynn G; Vann, Philip H et al. (2018) Gait Analyses in Mice: Effects of Age and Glutathione Deficiency. Aging Dis 9:634-646
Grillo, Michael A; Grillo, Stephanie L; Gerdes, Bryan C et al. (2018) Control of Neuronal Ryanodine Receptor-Mediated Calcium Signaling by Calsenilin. Mol Neurobiol :
Kaja, Simon; Payne, Andrew J; Naumchuk, Yuliya et al. (2017) Quantification of Lactate Dehydrogenase for Cell Viability Testing Using Cell Lines and Primary Cultured Astrocytes. Curr Protoc Toxicol 72:2.26.1-2.26.10
Shetty, Ritu A; Rutledge, Margaret A; Forster, Michael J (2017) Retrograde conditioning of place preference and motor activity with cocaine in mice. Psychopharmacology (Berl) 234:515-522
Engler-Chiurazzi, E B; Brown, C M; Povroznik, J M et al. (2017) Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol 157:188-211
Engler-Chiurazzi, Elizabeth B; Covey, Douglas F; Simpkins, James W (2017) A novel mechanism of non-feminizing estrogens in neuroprotection. Exp Gerontol 94:99-102
Mock, J Thomas; Chaudhari, Kiran; Sidhu, Akram et al. (2017) The influence of vitamins E and C and exercise on brain aging. Exp Gerontol 94:69-72
Engler-Chiurazzi, E B; Singh, M; Simpkins, J W (2016) From the 90's to now: A brief historical perspective on more than two decades of estrogen neuroprotection. Brain Res 1633:96-100
Russell, Ashley E; Doll, Danielle N; Sarkar, Saumyendra N et al. (2016) TNF-? and Beyond: Rapid Mitochondrial Dysfunction Mediates TNF-?-Induced Neurotoxicity. J Clin Cell Immunol 7:

Showing the most recent 10 out of 173 publications