Progesterone is protective against insults relevant to the aging process and neurodegenerative disease. However, the impact of age,and whether mechanisms implicated in progesterone's protective effects translate to the ability of progesterone to preserve cognitive function is still unclear. In the first period of funding, we determined that progesterone is neuroprotective and that this protection was dependent on the ERK/MAPK pathway and neurotrophin signaling. In addition, our data suggested that the NMDA receptor may be a relevant downstream target of progesterone's protective effects. The NMDA receptor is an important mediator of hippocampal long term potentiation (LTP). Since the ERK pathway and neurotrophin signaling are also implicated in the regulation of cognitive function, we hypothesized that progesterone by itself protects against age-associated cognitive impairment by regulating the function and/or expression of NMDA receptors and associated hippocampal LTP. Further, we predict that the intactness of progesterone- induced signaling, NMDA receptor phosphorylation and/or expression, and LTP will predict successful cognitive aging in old mice. These hypotheses will be tested through the completion of the following 4 aims: 1) To determine if progesterone prevents against ovariectomy-induced cognitive deficits in young adult, middle aged and old C57BI/6 mice, and if such effects are associated with effects of progesterone on hippocampal LTP;2) To determine if progesterone regulates NMDA receptor expression and/or phosphorylation as a potential mechanism underyling its effects on LTP and cognition;3) To determine if signaling mediators of progesterone-induced neuroprotection (such as ERK)mediate the effects of progesterone on NMDA receptor phosphorylation and hippcampal LTP;and 4) To determine if the """"""""intactness"""""""" of progesterone-induced signaling, NMDA receptor phosphorylation (or expression) and regulation of LTP,predicts successful aging. The successful completion of this project will fill an important gap in our understanding of how progesterone alone regulates cognitive function, and will be achieved through extensive utilization of the the 3 Cores and substantial interaction with the other Projects. In addition to greatly expanding our understanding of progesterone neurobiology, the results may also impact how we consider hormones in treating such neurodegenerative diseases as Alzheimer's disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG022550-09
Application #
8377690
Study Section
Special Emphasis Panel (ZAG1-ZIJ-8)
Project Start
Project End
2013-02-28
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
9
Fiscal Year
2012
Total Cost
$242,481
Indirect Cost
$74,091
Name
University of North Texas
Department
Type
DUNS #
110091808
City
Fort Worth
State
TX
Country
United States
Zip Code
76107
Izurieta Munoz, Haydee; Gonzales, Eric B; Sumien, Nathalie (2018) Effects of creatine supplementation on nociception in young male and female mice. Pharmacol Rep 70:316-321
Mock, J Thomas; Knight, Sherilynn G; Vann, Philip H et al. (2018) Gait Analyses in Mice: Effects of Age and Glutathione Deficiency. Aging Dis 9:634-646
Grillo, Michael A; Grillo, Stephanie L; Gerdes, Bryan C et al. (2018) Control of Neuronal Ryanodine Receptor-Mediated Calcium Signaling by Calsenilin. Mol Neurobiol :
Mock, J Thomas; Chaudhari, Kiran; Sidhu, Akram et al. (2017) The influence of vitamins E and C and exercise on brain aging. Exp Gerontol 94:69-72
Kaja, Simon; Payne, Andrew J; Naumchuk, Yuliya et al. (2017) Quantification of Lactate Dehydrogenase for Cell Viability Testing Using Cell Lines and Primary Cultured Astrocytes. Curr Protoc Toxicol 72:2.26.1-2.26.10
Shetty, Ritu A; Rutledge, Margaret A; Forster, Michael J (2017) Retrograde conditioning of place preference and motor activity with cocaine in mice. Psychopharmacology (Berl) 234:515-522
Engler-Chiurazzi, E B; Brown, C M; Povroznik, J M et al. (2017) Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol 157:188-211
Engler-Chiurazzi, Elizabeth B; Covey, Douglas F; Simpkins, James W (2017) A novel mechanism of non-feminizing estrogens in neuroprotection. Exp Gerontol 94:99-102
Russell, Ashley E; Doll, Danielle N; Sarkar, Saumyendra N et al. (2016) TNF-? and Beyond: Rapid Mitochondrial Dysfunction Mediates TNF-?-Induced Neurotoxicity. J Clin Cell Immunol 7:
Richter, Frank; Koulen, Peter; Kaja, Simon (2016) N-Palmitoylethanolamine Prevents the Run-down of Amplitudes in Cortical Spreading Depression Possibly Implicating Proinflammatory Cytokine Release. Sci Rep 6:23481

Showing the most recent 10 out of 173 publications