The overarching aim of this application is to greatly expand knowledge about preclinical AD and specifically to characterize the chronology of biomarker changes, determine their path biological signatures (if any), and identify cognitively normal persons who are at very high risk for developing symptomatic AD. Successful treatment strategies will require biomarkers that can identify individuals at high risk for AD and at the earliest clinical stages in order to target them for clinical trials, disease- modifying therapies nd to monitor therapy success. The overall Specific Aims in this renewal application are to: 1. Follow the current participants in ACS and add new enrollees to maintain the sample size at ~300. 2. Obtain longitudinal data from the ACS participants at 2 year intervals with the following measures: a. Clinical and cognitive assessments (Clinical Core) b. Amyloid imaging with PET PIB (Project 1) c. Assays of amyloid-beta (A?), tau, phosphorylated tau181 (p- tau181), and novel analytes in CSF and blood (Project 2, supported by the Biomarker Core) d. Attentional control battery and task-related functional MRI (fMRI) (Project 3) e. Structural MRI, resting state functional connectivity MRI (fcMRI), diffusion tensor imaging (DTI), and cerebral blood flow using arterial spin labeling (ASL) (Project 4) 3. Analyze associations among rates of change of all disease markers from all Cores and Projects (Data Management and Biostatistics Core).

Public Health Relevance

The results of clinical assessment, studies of biomarkers (PET imaging, MRI of the brain, cerebrospinal fluid analysis, and tasks which place a high load on attentional systems) will be correlated to identify the earliest brain changes of AD, determine the evolution of these changes over time, and assess their predictive power for the eventual development of symptomatic AD by studying participants in two groups-one with a family history of AD and the other with no family history of AD. REVIEW OF INDIVIDUAL COMPONENTS OF THE PROGRAM PROJECT CORE A: ADMINISTRATION;Dr. John C. Morris, Core Leader (CL) DESCRIPTION ( provided by applicant): The Administration Core acts to ensure that the research and programmatic goals of the Adult Children Study program project grant (ACS PPG) are met. The administrative leadership consists of the Director (Morris) and the Executive Director (Buckles). They are assisted by the Executive Committee that includes these individuals, leaders of Cores and Projects, and other senior faculty. The Administration Core supports, monitors, and coordinates the activities of all components of the ACS PPG. It will annually convene an External Advisory Committee to review activities and progress. The specific aims are to: 1. Coordinate and integrate the Cores and Projects and provide administrative and budgetary support and oversight, ensuring appropriate utilization of funds 2. Monitor the effectiveness of the PPG toward achieving the stated goals 3. Arrange for periodic external review and advice concerning PPG goals and progress 4. Coordinate and oversee data integration with Washington University Center for Biomedical Informatics to develop, maintain, and monitor an integrated database

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4 (01))
Program Officer
Hsiao, John
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Schools of Medicine
Saint Louis
United States
Zip Code
Day, Gregory S; Gordon, Brian A; Perrin, Richard J et al. (2018) In vivo [18F]-AV-1451 tau-PET imaging in sporadic Creutzfeldt-Jakob disease. Neurology 90:e896-e906
Lewczuk, Piotr; Riederer, Peter; O'Bryant, Sid E et al. (2018) Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J Biol Psychiatry 19:244-328
Oxtoby, Neil P; Young, Alexandra L; Cash, David M et al. (2018) Data-driven models of dominantly-inherited Alzheimer's disease progression. Brain 141:1529-1544
Allison, Samantha; Babulal, Ganesh M; Stout, Sarah H et al. (2018) Alzheimer Disease Biomarkers and Driving in Clinically Normal Older Adults: Role of Spatial Navigation Abilities. Alzheimer Dis Assoc Disord 32:101-106
La Joie, Renaud; Bejanin, Alexandre; Fagan, Anne M et al. (2018) Associations between [18F]AV1451 tau PET and CSF measures of tau pathology in a clinical sample. Neurology 90:e282-e290
Broce, Iris; Karch, Celeste M; Wen, Natalie et al. (2018) Correction: Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies. PLoS Med 15:e1002504
Liao, Fan; Li, Aimin; Xiong, Monica et al. (2018) Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. J Clin Invest 128:2144-2155
Yan, Qi; Nho, Kwangsik; Del-Aguila, Jorge L et al. (2018) Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Mol Psychiatry :
Strain, Jeremy F; Smith, Robert X; Beaumont, Helen et al. (2018) Loss of white matter integrity reflects tau accumulation in Alzheimer disease defined regions. Neurology 91:e313-e318
Li, Zeran; Del-Aguila, Jorge L; Dube, Umber et al. (2018) Genetic variants associated with Alzheimer's disease confer different cerebral cortex cell-type population structure. Genome Med 10:43

Showing the most recent 10 out of 352 publications