Alzheimer's disease (AD) will soon become a public health crisis. There currently are no treatments that delay the onset or prevent the progression of AD, though several promising candidates are in development. It will, therefore, be important to have biomarkers that can identify individuals at high risk in order to target them for clinical trials, disease-modifying therapies and to monitor therapy. AD pathology (e.g., A(3 plaques) begins 10-20 years before the onset of cognitive symptoms. Even the earliest clinical symptoms are accompanied by neuronal and synaptic dysfunction/death. Thus, it will be critical to identify individuals with """"""""preclinical"""""""" AD, prior to marked clinical symptoms and neuron loss, so new therapies will have the best chance to preserve normal brain function. Low levels of CSF AP42 have been shown to be an excellent marker of cortical amyloid early in the disease, whereas CSF tau/AP42 and ptaui8i/AP42 ratios are useful in predicting future cognitive decline. It is unclear, however, how early in the disease process such changes in CSF become detectable, so efforts are being made to study younger cohorts in the hopes of identifying affected individuals at the very earliest stages. Our long term goal is to fully understand the longitudinal evolution of biomarker changes during the natural course of AD. Project 2 begins to address this goal.
Aim 1 : Obtain standardized measures of Ap4o, AP42, tau, ptaui8i, and novel markers YKL-40, and VILIP-1 in fasted CSF samples and APi^o, Apx-40, Api^2, and APx-42in matched, fasted plasma samples using enzymelinked immunosorbent assays (plate-based ELISA) and xMAP (Luminex, bead-based) technologies.
Aim 2 : In longitudinal studies, assess the annual rate of change in biomarker levels as a function of family history and APOE e4 status, and investigate whether low CSF AP42 levels, or a drop in AP42 over time, predict future change in other biomarker analytes, such as tau, ptauisi, neuroinflammatory markers (e.g.,YKL-40), or putative markers of neurodegeneration (e.g., VILIP-1).
Aim 3 : Correlate fluid biomarker measures (and rate of biomarker change over time) with future cognitive decline (Clinical Core), changes in cortical amyloid load as assessed by PIB (Project 1), neuropsychological measures (Project 3), and structural/functional neuroimaging measures (Project 4).

Public Health Relevance

There are currently no effective treatments that will prevent Alzheimer's disease, halt its progression or delay its onset, although several therapeutic approaches are being developed and tested in clinical trials. Parallel efforts are being channeled into developing biomarkers that would aid in disease diagnosis and prognosis and assessing disease risk. Together these combined endeavors have the potential to provide physicians the tools to effectively diagnose and treat the disease, preferably even before the onset of cognitive decline.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG026276-09
Application #
8732593
Study Section
Special Emphasis Panel (ZAG1-ZIJ-4)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
9
Fiscal Year
2014
Total Cost
$268,646
Indirect Cost
$91,905
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Cruchaga, Carlos; Del-Aguila, Jorge L; Saef, Benjamin et al. (2018) Polygenic risk score of sporadic late-onset Alzheimer's disease reveals a shared architecture with the familial and early-onset forms. Alzheimers Dement 14:205-214
Pottier, Cyril; Zhou, Xiaolai; Perkerson 3rd, Ralph B et al. (2018) Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurol 17:548-558
Kinnunen, Kirsi M; Cash, David M; Poole, Teresa et al. (2018) Presymptomatic atrophy in autosomal dominant Alzheimer's disease: A serial magnetic resonance imaging study. Alzheimers Dement 14:43-53
Mishra, Shruti; Blazey, Tyler M; Holtzman, David M et al. (2018) Longitudinal brain imaging in preclinical Alzheimer disease: impact of APOE ?4 genotype. Brain 141:1828-1839
Schultz, Stephanie A; Gordon, Brian A; Mishra, Shruti et al. (2018) Widespread distribution of tauopathy in preclinical Alzheimer's disease. Neurobiol Aging 72:177-185
Schindler, Suzanne E; Gray, Julia D; Gordon, Brian A et al. (2018) Cerebrospinal fluid biomarkers measured by Elecsys assays compared to amyloid imaging. Alzheimers Dement 14:1460-1469
Javaherian, Kavon; Newman, Brianne M; Weng, Hua et al. (2018) Examining the Complicated Relationship Between Depressive Symptoms and Cognitive Impairment in Preclinical Alzheimer Disease. Alzheimer Dis Assoc Disord :
Weintraub, Sandra; Besser, Lilah; Dodge, Hiroko H et al. (2018) Version 3 of the Alzheimer Disease Centers' Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Dis Assoc Disord 32:10-17
Jansen, Willemijn J; Ossenkoppele, Rik; Tijms, Betty M et al. (2018) Association of Cerebral Amyloid-? Aggregation With Cognitive Functioning in Persons Without Dementia. JAMA Psychiatry 75:84-95
Lucey, Brendan P; Hicks, Terry J; McLeland, Jennifer S et al. (2018) Effect of sleep on overnight cerebrospinal fluid amyloid ? kinetics. Ann Neurol 83:197-204

Showing the most recent 10 out of 352 publications