In the current budget period, the Adult Children Study (ACS) transitioned from cross-sectional to longitudinal analyses, many of which are ongoing. With this application, the ACS now incorporates new biomarkers to address the overarching hypothesis that disrupted neural integrity is the proximate cause of the transition from preclinica to symptomatic Alzheimer disease (AD). Two corollary hypotheses will be addressed: 1) cerebral amyloidosis and tauopathy individually are necessary but insufficient to cause the transition from cognitive normality to impairment; and 2) the spread of tauopathy from the medial temporal lobe to the neocortex is the tau imaging correlate of the transition from preclinical to symptomatic AD. Predicting individual-level development of symptomatic AD will be enormously important for the field and may accelerate secondary prevention trials of anti-AD therapies by permitting the enrollment of only cognitively normal individuals who have near certainty of progressing to symptomatic AD. The ACS investigators and its cohort are uniquely qualified to accomplish the following Specific Aims: 1. Recruit, enroll, and maintain the ACS cohort (N?300) 2. At entry and every 3 years thereafter comprehensively assess all participants with: 1) well-established clinical and cognitive instruments (annually for participants >65 years); 2) blood for genotyping for apolipoprotein E and other susceptibility genetic variants; 3) PET scans with amyloid and tau tracers (florbetapir and T807); 4) lumbar puncture (LP) for the collection of CSF; 5) an attentional battery; and 6) structural and functional MRI. 3. In ACS participants who transition from cognitive normality to impairment, correlate phenoconversion with: a. The regional distribution and density of tau retention (Project 1) b. CSF markers of neural (tau, p-tau181) and synaptic (SNAP-25, neurogranin) injury (Project 2) c. Longitudinal rates of change on measures of global cognition and episodic memory (Clinical Core, Project 1) and attentional control (Project 3), cross sectional event-related fMRI as a function of AD markers, and the relation among A?42, sleep, and memory consolidation mechanisms (Project 3) d. The regional distribution and density of amyloid retention, and changes in brain structure and function (hippocampal volume, cortical thickness, functional connectivity) (Project 4) e. CSF concentrations of A?42, and also novel analytes (YKL-40, VILIP 1) (Project 2) 4. Analyze associations among rates of change of all AD markers from all Cores and Projects (Data Management and Biostatistics Core).

Public Health Relevance

The Adult Children Study has created a cohort of middle age and older individuals, with and without a family history of Alzheimer disease (AD), who longitudinally undergo a comprehensive battery of biological, clinical and cognitive tests to identify the earliest brain changes of AD prior to any clinical symptoms. This renewal will focus on defining the 'trigger(s)' that leads to symptomatic AD, possibly sufficient for individual prediction. Predicting individual-level development of symptomatic AD will be enormously important for the field and may accelerate secondary prevention trials of anti-AD therapies by permitting the enrollment of only cognitively normal individuals who have near certainty of progressing to symptomatic AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG026276-15
Application #
9963083
Study Section
Special Emphasis Panel (ZAG1)
Program Officer
Hsiao, John
Project Start
2005-07-01
Project End
2021-05-31
Budget Start
2020-06-01
Budget End
2021-05-31
Support Year
15
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Washington University
Department
Neurology
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Schindler, Suzanne E; Sutphen, Courtney L; Teunissen, Charlotte et al. (2018) Upward drift in cerebrospinal fluid amyloid ? 42 assay values for more than 10 years. Alzheimers Dement 14:62-70
Sato, Chihiro; Barthélemy, Nicolas R; Mawuenyega, Kwasi G et al. (2018) Tau Kinetics in Neurons and the Human Central Nervous System. Neuron 98:861-864
Babulal, Ganesh M; Chen, Suzie; Williams, Monique M et al. (2018) Depression and Alzheimer's Disease Biomarkers Predict Driving Decline. J Alzheimers Dis 66:1213-1221
Millar, Peter R; Balota, David A; Bishara, Anthony J et al. (2018) Multinomial models reveal deficits of two distinct controlled retrieval processes in aging and very mild Alzheimer disease. Mem Cognit 46:1058-1075
Gangishetti, Umesh; Christina Howell, J; Perrin, Richard J et al. (2018) Non-beta-amyloid/tau cerebrospinal fluid markers inform staging and progression in Alzheimer's disease. Alzheimers Res Ther 10:98
Vlassenko, Andrei G; Gordon, Brian A; Goyal, Manu S et al. (2018) Aerobic glycolysis and tau deposition in preclinical Alzheimer's disease. Neurobiol Aging 67:95-98
Roe, Catherine M; Babulal, Ganesh M; Stout, Sarah H et al. (2018) Using the A/T/N Framework to Examine Driving in Preclinical AD. Geriatrics (Basel) 3:
Stout, Sarah H; Babulal, Ganesh M; Ma, Chunyu et al. (2018) Driving cessation over a 24-year period: Dementia severity and cerebrospinal fluid biomarkers. Alzheimers Dement 14:610-616
Chen, Jason A; Fears, Scott C; Jasinska, Anna J et al. (2018) Neurodegenerative disease biomarkers A?1-40, A?1-42, tau, and p-tau181 in the vervet monkey cerebrospinal fluid: Relation to normal aging, genetic influences, and cerebral amyloid angiopathy. Brain Behav 8:e00903
Day, Gregory S; Musiek, Erik S; Morris, John C (2018) Rapidly Progressive Dementia in the Outpatient Clinic: More Than Prions. Alzheimer Dis Assoc Disord 32:291-297

Showing the most recent 10 out of 352 publications