Vascular heparan sulfate proteoglycan (HSPG) plays an important structural and functional role in the vascular permeability barrier. HSPG is comprised of two major components: heparan sulfate (HS) (a glycosaminoglycan (GAG)), and a protein core. In animal models, antibodies to HSPG protein core cause vascular injury. In humans and in animal models of systemic lupus erythematosus (SLE), investigators have demonstrated serum antibodies and deposited antibodies in glomeruli which are broadly cross-reactive with both DNA and HS GAG. In humans, we demonstrated autoantibodies to intact HSPG. We further demonstrated immunospecific autoantibodies to HS GAG in patients with vascular disease. Preliminary data from our laboratory also indicate the presence of autoantibodies to HSPG protein core in human SLE sera. The hypothesis of this proposal is that autoimmunity to vascular HSPG causes vascular injury in autoimmune disease. Our hypothesis has significance for understanding the specificity and significance of polyspecific autoantibodies reactive with anionic molecules in autoimmune disease. The pathologic origin and significance of anti-DNA and anti- phospholipid antibodies in autoimmune disease is unknown. We propose that HS is the immunospecific epitope of high affinity with which anti-DNA and anti-phospholipid antibodies are reactive. High affinity autoantibodies to HS are pathologically significant because they are more efficient than broadly cross-reactive, low affinity autoantibodies in activating complement, and initiating inflammation. PG protein core epitopes also play a role in organ-specificity. A corollary hypothesis proposes that organ-specific (vascular-specific) HSPG protein core epitopes are immunologic targets in organ-specific autoimmune disease. Careful immunochemical studies are required to investigate this hypothesis. Hybridoma technology will be employed to study the immunochemistry of monoclonal anti-HSPG autoantibodies from humans and mice with autoimmune vascular disease. We will also determine this immunodominant sites of HSPG protein core recognized by murine SLE T cell clones. Finally, we will explore mechanisms of autoimmune vascular injury by investigations of complement activation and endothelial cell cytotoxicity employing monoclonal autoantibodies to HSPG from patients and mice with autoimmune vascular disease.

Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
1996
Total Cost
Indirect Cost
Bogunovic, Milena; Dave, Shaival H; Tilstra, Jeremy S et al. (2007) Enteroendocrine cells express functional Toll-like receptors. Am J Physiol Gastrointest Liver Physiol 292:G1770-83
Perera, Lilani; Shao, Ling; Patel, Anjlee et al. (2007) Expression of nonclassical class I molecules by intestinal epithelial cells. Inflamm Bowel Dis 13:298-307
Dotan, Iris; Allez, Matthieu; Nakazawa, Atsushi et al. (2007) Intestinal epithelial cells from inflammatory bowel disease patients preferentially stimulate CD4+ T cells to proliferate and secrete interferon-gamma. Am J Physiol Gastrointest Liver Physiol 292:G1630-40
Kraus, Thomas A; Cheifetz, Adam; Toy, Lisa et al. (2006) Evidence for a genetic defect in oral tolerance induction in inflammatory bowel disease. Inflamm Bowel Dis 12:82-8; discussion 81
Shao, Ling; Jacobs, Adam R; Johnson, Valrie V et al. (2005) Activation of CD8+ regulatory T cells by human placental trophoblasts. J Immunol 174:7539-47
Brimnes, Jens; Allez, Matthieu; Dotan, Iris et al. (2005) Defects in CD8+ regulatory T cells in the lamina propria of patients with inflammatory bowel disease. J Immunol 174:5814-22
Safadi, Rifaat; Alvarez, Carlos E; Ohta, Masayuki et al. (2005) Enhanced oral tolerance in transgenic mice with hepatocyte secretion of IL-10. J Immunol 175:3577-83
Kraus, Thomas A; Brimnes, Jens; Muong, Christine et al. (2005) Induction of mucosal tolerance in Peyer's patch-deficient, ligated small bowel loops. J Clin Invest 115:2234-43
Ando, Takao; Davies, Terry F (2005) Monoclonal antibodies to the thyrotropin receptor. Clin Dev Immunol 12:137-43
Nakazawa, Atsushi; Dotan, Iris; Brimnes, Jens et al. (2004) The expression and function of costimulatory molecules B7H and B7-H1 on colonic epithelial cells. Gastroenterology 126:1347-57

Showing the most recent 10 out of 151 publications