The capacity of inbred mice to resist infections with the malaria parasite Plasmodium Yoelii is determined by a dynamic interplay of host and parasite genes. Thus, a single strain of mouse may be relatively resistant to infection with an avirulent isolate of P. Yoelii, yet be exquisitely susceptible to infection with a virulent isolate of the same parasite species. The converse also applies. Both MHC genes, and genes outside the MHC influence that host response to infection. Experiments are proposed to identify and thoroughly characterize the host genes which influence the immune response following infection. Parasite-specific humoral and cellular immune responses of genetically characterized susceptible and resistant mouse strains will be compared throughout the course of infection with different parasite isolates, and genetic differences between the virulent and avirulent malaria isolates will be assessed at the protein and nucleic acid levels. The long range goal of this project is to explain how a single set of host genes can regulate responses which mediate increased susceptibility to infection with one isolate of P. Yoelii, yet render the host comparatively resistant to infection with a related isolate of the same parasite species.

Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
1994
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Ward, T W; Kimmick, M W; Afanasiev, B N et al. (2001) Characterization of the structural gene promoter of Aedes aegypti densovirus. J Virol 75:1325-31
Lowenberger, C A (2001) Form, function and phylogenetic relationships of mosquito immune peptides. Adv Exp Med Biol 484:113-29
Gorman, M J; Paskewitz, S M (2001) Serine proteases as mediators of mosquito immune responses. Insect Biochem Mol Biol 31:257-62
Gorman, M J; Andreeva, O V; Paskewitz, S M (2000) Molecular characterization of five serine protease genes cloned from Anopheles gambiae hemolymph. Insect Biochem Mol Biol 30:35-46
Gorman, M J; Andreeva, O V; Paskewitz, S M (2000) Sp22D: a multidomain serine protease with a putative role in insect immunity. Gene 251:17-Sep
Lowenberger, C; Charlet, M; Vizioli, J et al. (1999) Antimicrobial activity spectrum, cDNA cloning, and mRNA expression of a newly isolated member of the cecropin family from the mosquito vector Aedes aegypti. J Biol Chem 274:20092-7
Allen-Miura, T M; Afanasiev, B N; Olson, K E et al. (1999) Packaging of AeDNV-GFP transducing virus by expression of densovirus structural proteins from a sindbis virus expression system. Virology 257:54-61
Mori, A; Severson, D W; Christensen, B M (1999) Comparative linkage maps for the mosquitoes (Culex pipiens and Aedes aegypti) based on common RFLP loci. J Hered 90:160-4
Lowenberger, C A; Kamal, S; Chiles, J et al. (1999) Mosquito-Plasmodium interactions in response to immune activation of the vector. Exp Parasitol 91:59-69
Afanasiev, B N; Ward, T W; Beaty, B J et al. (1999) Transduction of Aedes aegypti mosquitoes with vectors derived from Aedes densovirus. Virology 257:62-72

Showing the most recent 10 out of 46 publications