Leukotriene (LT)C4 synthase is the pivotal enzyme in the biosynthesis of LTC4, the parent compound of the receptor active cysteinyl leukotrienes. Thus, LTC4 synthase can regulate the biosynthesis of this potent lipid mediator, which contributes to the pathobiology of bronchial asthma and other inflammatory diseases through its metabolites, LTD4 and LTE4. The objectives of this project are to define the transcriptional regulation of the murine LTC4 synthase gene (Aim 1); to generate LTC4 synthase transgenic mice and the LTC4 synthase gene-disrupted mice (Aim 2); and to examine the in vivo responses of these gene manipulated mice to various inflammatory insults (Aim 3). To examine the transcriptional regulation of mouse LTC4 synthase gene, we will start with a previously identified 402-bp genomic fragment of mouse LTC4 synthase gene contining 352-bp of 5' flanking region. Promoter and enhancer elements will be defined by reporter contructs, mutagenic analysis, and by Dnase 1 hypersensitivity assays. Trans-acting factors will be characterized by gel shift and supershift assays. The major focus, however, is to assess the role of the cysteinyl leukotrienes in physiologic and pathobiologic processes by selective alterations of the terminal biosynthetic enzyme, LTC4 synthase. Transgenic mice will be created by pronuclear injection of a 5.5-kb genomic fragment containing the entire human LTC4 synthase gene with its native promoter. Mice will be screened for the transgene by PCR with human specific oligonucleotide primers and their gene dosage determined by Southern blot analysis. The gene-disrupted mice will be created with a targeting construct which contains a neomycin gene in place of exon 2 to exon 4 of mouse LTC4 synthase gene and a thymidine kinase gene downstream of the disrupted LTC4 synthase gene. Double resistence clones with homologous recombination will be used for blastocysts injection to create chimeric mice and subsequently gene-disrupted mice. The growth and development of these gene manipulated animals and the ability of their BMMC to express LTC4 synthase and to generate cysteinyl leukotrienes will be examined. Assessment of their inflammatory responses will include airway hyperreactivity to protein sensitization and aerosol challenge, arachidonic acid induced inflammation, systemic anaphylaxis, T. spiralis infection, and NSAID induced gastric ulcers.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
2P01AI031599-09
Application #
6212530
Study Section
Special Emphasis Panel (ZAI1-PTM-I (M1))
Project Start
1991-09-01
Project End
2003-08-31
Budget Start
Budget End
Support Year
9
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02115
Ohta, Shin; Imamura, Mitsuru; Xing, Wei et al. (2013) Group V secretory phospholipase A2 is involved in macrophage activation and is sufficient for macrophage effector functions in allergic pulmonary inflammation. J Immunol 190:5927-38
Lundequist, Anders; Boyce, Joshua A (2011) LPA5 is abundantly expressed by human mast cells and important for lysophosphatidic acid induced MIP-1? release. PLoS One 6:e18192
Saino, Hiromichi; Ukita, Yoko; Ago, Hideo et al. (2011) The catalytic architecture of leukotriene C4 synthase with two arginine residues. J Biol Chem 286:16392-401
Lundequist, Anders; Nallamshetty, Samridhi N; Xing, Wei et al. (2010) Prostaglandin E(2) exerts homeostatic regulation of pulmonary vascular remodeling in allergic airway inflammation. J Immunol 184:433-41
Jiang, Yongfeng; Borrelli, Laura; Bacskai, Brian J et al. (2009) P2Y6 receptors require an intact cysteinyl leukotriene synthetic and signaling system to induce survival and activation of mast cells. J Immunol 182:1129-37
Shin, Kichul; Nigrovic, Peter A; Crish, James et al. (2009) Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes. J Immunol 182:647-56
Austen, K Frank; Maekawa, Akiko; Kanaoka, Yoshihide et al. (2009) The leukotriene E4 puzzle: finding the missing pieces and revealing the pathobiologic implications. J Allergy Clin Immunol 124:406-14; quiz 415-6
Barrett, Nora A; Maekawa, Akiko; Rahman, Opu M et al. (2009) Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells. J Immunol 182:1119-28
Jones, Tatiana G; Hallgren, Jenny; Humbles, Alison et al. (2009) Antigen-induced increases in pulmonary mast cell progenitor numbers depend on IL-9 and CD1d-restricted NKT cells. J Immunol 183:5251-60
Mathias, Clinton B; Freyschmidt, Eva-Jasmin; Caplan, Benjamin et al. (2009) IgE influences the number and function of mature mast cells, but not progenitor recruitment in allergic pulmonary inflammation. J Immunol 182:2416-24

Showing the most recent 10 out of 11 publications